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Abstract

Morphological, functional and behavioural adaptations of bats are among the most diverse within
mammals. A strong association between bat skull morphology and feeding behaviour has been
suggested previously. However, morphological variation related to other drivers of adaptation, in
particular echolocation, remains understudied.
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We assessed variation in skull morphology with respect to ecology (diet and emission type) and
function (bite force, masticatory muscles and echolocation characteristics) using geometric
morphometrics and comparative methods.

Our study suggests that variation in skull shape of 10 bat families is the result of adaptations to
broad dietary categories and sound emission types (oral or nasal). Skull shape correlates with
echolocation parameters only in a subsample of insectivorous species, possibly because they
(almost) entirely rely on this sensory system for locating and capturing prey. Insectivores emitting
low frequencies are characterised by a ventrally tilted rostrum, a trait not associated with feeding
parameters. This result questions the validity of a trade-off between feeding and echolocation
function. Our study advances understanding of the relationship between skull morphology and
specific features of echolocation and suggests that evolutionary constraints due to echolocation may
differ between different groups within the Chiroptera.

We studied skull size and shape variation in 10 families of bats. Skull size correlated strongly
with diet and frequency emission mode. The impact of echolocation on shape was
detectable within a subset of insectivorous species questioning trade-off between feeding
and echolocating.
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Introduction

Morphological changes in the mammalian skull are driven by a variety of functional demands
including feeding ecology (Janis 1990), environmental context (e.g. habitat productivity: Cardini et al.
2007) and broad morphological drivers (e.g. allometric rule: Cardini 2019). Flying mammals of the
order Chiroptera face the additional challenge of effective echolocation, and so their skulls also have
to behave as acoustic horns for efficient sound emission (Pedersen 1998).

Previous studies have documented a strong association between bat skull morphology and feeding
function. In particular, diet preferences, bite force and masticatory muscles have been widely
associated with skull size and shape variation in bats (e.g. Aguirre et al. 2002; Freeman 1998;
Santana et al. 2012). Nevertheless, the majority of these studies have focused on one family only,
the Phyllostomidae (Dumont 2007; Dumont et al. 2012; Hedrick et al. 2020, but see Hedrick &
Dumont 2018; Senawi et al. 2015). Although this family is the most diverse in terms of diet and skull
morphology (Wilson & Reeder 2005), comparisons within a broader taxonomic context are required
to detect more general patterns.

Laryngeal echolocating bats use acoustic emissions not only to locate prey and navigate the
environment but also to communicate (Jones & Siemers 2011). Different degrees of head rotation
are associated with emission type in bats: in nasal emitters the head is folded towards the chest,
while in oral emitters it rotates dorsally during ontogenesis (Pedersen 1998). Besides this well-
described dichotomy between oral and nasal emitters, our understanding of the influence of
echolocation adaptation on size and shape of bat skulls remains limited. Adaptations for
echolocation are generally thought to be associated with soft tissue rather than bony structures
(Elemans et al. 2011). Evidence that bat skull size is associated with echolocation parameters (in
particular peak frequency, [FP]) has been detected in some bat families (Jacobs et al. 2014; Thiagavel
et al. 2017), but there is still a significant gap in our understanding of how echolocation relates to
morphology (particularly to skull shape) and whether or not a general pattern is present across
families (but see Jacobs et al. 2014 for Rhinolophidae). Different selective pressures can drive
related taxa towards different evolutionary optima, especially when they influence trade-offs
between traits (Arbour et al. 2019; Dumont et al., 2014). Insectivorous bats are known to rely mainly
on echolocation to detect and pursue their prey, in contrast with other bats (e.g. carnivorous
species) that also rely on vision and olfaction (Bahlman & Kelt 2007; Ripperger et al. 2019; Surlykke
et al. 2013). Thus, we set out to test the hypothesis that insectivorous species display an association
between skull shape and echolocation characteristics due to a less flexible (but more specialized)
sensory system. More specifically, we used geometric morphometrics and phylogenetic comparative
methods to test the following main predictions:

the association between feeding descriptors (i.e., diet, bite force, masticatory muscle) and skull
morphology follows a general pattern within the Chiroptera. Hedrick et al. (2020) recently
proposed the relative rostrum length as a key trait allowing Phyllostomidae to occupy the broad
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range of their dietary niches. Because this trait correlates strongly with bite force in bats and
other mammals (Wroe et al. 2005; Dumont 2007; Santana et al. 2010) we predict that skull
shape changes generally associated with face shortening and more powerful masticatory
muscles (Herrel et al. 2008) should occur in Chiroptera that are able to generate relatively high
bite force.

Insectivorous bats display an association between skull morphology (both size and shape) and
echolocation call parameters because they almost exclusively rely on sound emission to detect
and pursue their prey. This hypothesis has been already proposed by Bogdanowicz et al. (1999)
who identified that echolocation calls are dominated by low frequencies in bigger insectivores
unlike smaller species which use higher frequencies (Jones 1999).

Insectivorous bats show a trade-off in skull shape between feeding and sensory function due to
dual skull functions: processing hard food and optimising sound emission. Hard food processing
requires a relatively short rostrum for maximising bite force (Herring 1993). This trait equally
correlates with the ability to produce high frequency sounds that limit prey detection range for
bats. Jacobs et al. (2014) proposed that these two functions have opposing effects on the
evolution of skull shape variation. This hypothesis was validated in Rhinolophidae showing
significant association between skull shape, bite force and frequency peak.

Methods

Sample

We examined 185 bat skulls, belonging to 67 species, from 10 different bat families. This is
representative of 5% of the total diversity of extant Chiroptera that are currently divided into 21
families (Wilson & Reader 2005). The number of species was constrained by the need to consistently
collect data on skull morphology, diet, emission type, echolocation parameters, masticatory muscle
mass and bite force using the same established protocols. Masticatory muscle data were available
for a subsample of just over half of the species (96 specimens, 34 species, 5 bat families) and were
included in the analyses. Details on origins of specimens (museum collections) are reported in Table
S1.

Functional, ecological and morphological data

Sensory (i.e., echolocation parameters) and feeding (i.e., bite force and muscles mass) data were
acquired from the literature or collected in the field. Details on collection techniques and criteria for
data selection are provided in the Supporting Information together with the selected literature and
raw data used in this study (Table S2 and S3 for sensory and feeding parameters, respectively). All
sensory and feeding estimates were logy, transformed prior to the analysis.

Morphological data were collected by geometric morphometric methods (GMM) applied to 3D
digital models of bat crania (landmark configuration described in Fig. 1 and Table S5). An established
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photogrammetric protocol (Giacomini et al. 2019) and micro CT scans were employed to digitally
reconstruct the models (Table S1). The combination of 3D reconstruction techniques (i.e.,
photogrammetry and micro CT scan) has been demonstrated to provide robust biological results in
macroevolutionary analyses when appropriate preliminary tests are performed on a subsample of
the data (Giacomini et al. 2019; Shearer et al. 2017). Details on the GMM are reported in the
Supporting Information.

To assess the relationship between morphology and ecological groups, we classified species by
broad diet categories, ability for laryngeal echolocation and emission type. The full list of traits
studied and parameter abbreviations used hereafter are reported in Table 1. Diet was categorized by
traditional groups inferred from Wilson and Reeder (2005) and is reported in Table 1. We followed
Thiagavel et al. (2018) to categorize species according to whether they are capable of laryngeal
echolocation (LE) or not (NLE). LE bats were further categorized according to emission type, as
species that use mouth emission (M), nasal emission (R), or emission from both nose and mouth (B),
following references in Table S2 and additional references (Goudy-Trainor & Freeman 2002;
Jakobsen et al. 2018; Pedersen 1998; Seibert et al. 2015; Surlykke et al. 2013).

Comparative analyses

All the analyses in this study were performed above the species level (=interspecific scale) using a
phylogenetic comparative approach (PGLS: phylogenetic generalized least squares; phylogenetic
Partial Least Squares, phylo-PLS). The raw data (both functional traits and skull morphological data)
were averaged by species. Phylogenetic histories were represented by a series of pruned trees
extracted from the calibrated and ultrametric phylogenetic tree built by Shi and Rabosky (2015),
with tips corresponding to the species of our dataset (and sub datasets). The tree was used to
compute the phylogenetic variance-covariance matrices employed in PGLS and phylogenetic PLS
(Adams & Felice 2014; Rohlf 2006, 2007). The analyses were performed using the R packages
“geomorph” (Adams & Otarola-Castillo 2013), “caper” (Orge et al. 2013), “mvMorph” (Clavel et al.
2015) and “phytools” (Revell 2012).

Size variation

Skull size was here represented by log,, centroid size (defined as the square root of the squared
distances from each landmark to the barycentre of the landmark configuration). This variable was
used as independent in order to explore allometric variation in feeding and sensory parameters
(Table 1). Phylogenetic Generalised Least Squares was applied to account for phylogenetic non-
independence of interspecific data. We employed the method proposed by Revell (2010) that allows
simultaneous estimation of regression parameters and lambda (A: a measure of the strength of
phylogenetic signal in the data with 0 = no phylogenetic structure, and 1 = data fully explained by the
phylogeny) using maximum likelihood. The allometric equations were tested based on sample
availability (n = 67 for bite force; n = 61 for sensory parameters, including all the species except
Pteropodidae; n =34 for muscle parameters) and residuals were subsequently used for the analyses
of association between functional parameters and skull shape.
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Skull shape variation, phylogenetic signal and ecological grouping

A Principal Component Analysis (PCA) was performed on Procrustes shape coordinates in order to
visualize the skull shape variation in the sample. The 3D model of Artibeus jamaicensis was warped
on the consensus (i.e., mean shape of the dataset), and the result was subsequently warped on the
maximum and minimum shape of the first two PC axes to indicate major morphological variation in
the dataset (Klingenberg 2013). The warped model on the consensus was used as the reference
mesh in all the subsequent shape visualizations to facilitate comparisons between the different
analyses. Wireframe visualizations were equally provided in the supplementary figures to provide a
more detailed representation of shape changes strictly associated to changes in the landmark spatial
positioning.

The K statistic of Blomberg et al. (2003) was used to test for the presence of a phylogenetic signal in
the shape data. The K statistic reflects the degree of congruence between the trait and the
phylogeny (Blomberg et al. 2003) and has been extended to multivariate data (K.,) by Adams
(2014). Statistical significance of K., was assessed using randomization (Adams 2014).

Associations between skull shape and ecological categories (diet and emission type) were tested
using phylogenetic multivariate analysis of variance (pMANOVA; Clavel & Morlo (2020). This is a
novel approach that allows incorporation of several evolutionary models. Specifically, skull shape
data represented the dependent variable (Y, multivariate) and ecological categories the independent
(X). Phylogeny was accounted for using the following models: Brownian Motion (BM) where the
amount of evolutionary change in a trait is proportional to branch lengths; Early Burst (EB) that
assumes exponentially reductions in diversification rates through time as found in adaptive
radiations (Harmon et al. 2010; Ingram et al. 2012); Ornstein—Uhlenbeck (OU), a model that takes
into account stabilizing/divergent selection and stasis so that traits can evolve towards a single or
multiple optima (Hansen 1997; Butler and King 2004; Beaulieu et al. 2012); lambda branch length
transformations that stretch basal or terminal nodes approximating different levels of phylogenetic
signal in the data (Pagel 1999). Models were compared using penalised likelihood and best model
implemented in the final pPMANOVA.

Evolutionary trade-off between feeding and sensory function

Phylogenetic Partial Least Squares (phylo-PLS) was employed to test for association between skull
shape data and functional parameters in the sub-sample of laryngeal echolocating bats (n = 61) and
insectivore species (n = 19). This method was preferred because it allows phylogenetic relatedness
(using the function ‘phylo.integration’, Adams & Felice 2014) and the relative association within and
between each block of multivariate variables (in our case, skull shape data and feeding/echolocation
parameters, Table 1) to be simultaneously taken into account without assuming any directionality
(there is no dependent or independent block of variables). Phylo-PLS model should be significant if
bats are able to optimise skull shape for feeding function and frequency emission (see Jacobs et al.
2014).
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For the subsample of laryngeal echolocating bats (n=61), bite force was the only representative
feeding variable while in the insectivores (n=19) relative masticatory muscle masses were also
analysed. These variables were represented by residuals from PGLS allometric models (see Nogueira
et al. (2009) that equally identified covariation between Phyllostomidae skull shape and residual bite
force). Finally, the block of functional parameters was divided into feeding and echolocation for
further phylo-PLS models. Strength of association between shape data and functional blocks of
variables was quantified using the RV coefficient (Escoufier 1973) and compared between models
using z-scores (Adams & Collyer 2016). The reference skull mesh was warped on the maximum and
minimum shapes for the phylo-PLS models to visualize shape covariation with feeding and
echolocation. The comparison of shape changes that were related to echolocation and feeding
provided insights into possible functional trade-offs.

Results

Size variation in bat skulls

The PGLS models identified a significant positive association between skull size and feeding
parameters in all cases, while negative relationships were found for all echolocation parameters
except “Duration” (Table 2). Lambda varied between 0.00, indicating no phylogenetic signal (e.g., the
digastric and temporalis muscle mass) and 1.00, indicative of traits following Brownian Motion
model (as found for the majority of sensory parameters). This supports the presence of a significant
phylogenetic and allometric signal in both feeding and echolocation parameters.

Skull shape variation and ecological grouping

Most of the morphological variation between the 67 bat species was described by principal
components 1 (PC1) and 2 (PC2) (33.35% and 27.02%, respectively) (Fig. 2; Fig. S1). PC1 displayed
shape variation related to rostrum length, zygomatic arch length and braincase height, and
separated NLE species (i.e., Pteropodidae family, frugivores) from LE species (generally insectivores).
PC2 showed variation mainly related to palatal length (i.e., maxillary and palatine bones) and
braincase length with mouth emitting species displaying a longer palatal length but a shorter
braincase respect to nasal and nasal/mouth emitting species (Fig. 2; Fig. S1).

A significant phylogenetic signal was identified in skull shape (P < 0.001) with K., = 1.255, a value
greater than expected under the BM model of evolution.

EB model was found to be to be the best mode of evolution when testing for association between
skull shape and diet (loglikelihood = 13950.11, compared to 13865.6 found for BM, OU and lambda
models did not differ at all from BM in loglikelihood). Using the EB model, pPMANOVA identified a
significant impact of diet on skull shape (Pillai’s trace = 5.286, P = 0.001) explaining 13.93% of total
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variance. EB model was also favoured for the emission type categories (loglikelihood = 15080.28
compared to 15043.91 found for BM, OU and lambda), which were found to explain 52.34% of skull
shape variance (Pillai’s trace = 2.276, P = 0.001).

Analyses of trade-offs between feeding and sensory function

Phylo-PLS identified seven pairs of covariation vectors for skull shape and functional variables in 61
LE bats of which the first was significant (r-PLS = 0.662, P =0.0014, Effect Size = 3.244). The PLS1
vector was strongly loaded on residual bite force and much less so on echolocation parameters
(Table 3). When phylo-PLS was repeated using only echolocation parameters as a functional block,
no significant association could be detected with the shape vector (r-PLS = 0.541, P = 0.080, Effect
Size: 1.474), while correlation between skull shape and residual bite force remained significant when
in isolation (r-PLS = 0.646, P = 8e-04, Effect Size = 3.366, Fig. 3a). This relationship is mainly described
by the relative length of the rostrum: species with relatively greatest bite force for their skull size
(e.g. Molossus molossus) had a rostrum length that was much shorter than the braincase (Fig. 33,
Fig. S2). Within a subsample of 19 insectivores, a significant association between skull shape and all
functional variables (including relative muscle mass) still holds (r-PLS = 0.867, P = 0.006, Effect Size =
2.6504). PLS vector loading again revealed a predominant impact of feeding rather than sensory
parameters (Table 3), so separate phylo-PLSs were conducted. Significant correlation occurs
between skull shape and feeding variables in isolation (r-PLS = 0.865, P = 0.007, Effect Size = 2.6716)
but not between skull shape and sensory variables (r-PLS = 0.6518, P = 0.2761, Effect Size = 0.61251).
A closer inspection of the phylo-PLS plot (Fig. S3) showed two significant outliers of the Molossidae
family. When both species were removed (n = 17) phylo-PLS identified an opposite trend (Fig. 3b).
The skull shape vector was not significantly correlated with the feeding vector (r-PLS = 0.698, P =
0.063, Effect Size = 1.543), but was correlated with the sensory vector (r-PLS = 0.7716, P = 0.0127,
Effect Size = 2.31483). This was negatively loaded on start, end and peak frequency (Table 3) so that
species at positive scores are characterised by a diagonally tilted and shorter rostrum, wider
braincase and larger bullae (Fig. 3b).

Discussion

The chiropteran skull is optimally designed for multiple functions. By using a representative
taxonomic sample of 10 out of 21 families we identified a predominant impact of feeding
adaptations on skull shape above species level. This pattern was abundantly validated in the diverse
Phyllostomidae family (Dumont 2007; Nogueira et al. 2009) and our results extend it to many more
bat families. Relative rostrum length plays a significant role in optimising bite force (Fig. 3a) thus
supporting the recent proposal by Hedrick et al. (2020) that this trait allows occupation of multiple
feeding niches along a line of least evolutionary resistance.
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Diet explains a substantial proportion of shape variation in our sample and the implementation of
more complex evolutionary models suggested that Brownian Motion is not an appropriate model fit
to investigate skull phenotypic adaptations in bats. For our sample, Early Burst provided a better
implementation of the comparative methods in line with the rapid radiation of bat morphologies
conjunctly with echolocation adaptations (Arbour et al. 2019). It is thus expected that the categorical
variable “emission type” provided in our case even stronger exploratory power for skull shape
variation (c.ca 50%) than diet (c.ca 13%). Such a profound impact is well supported by a recent
embryonic study that identified common developmental origin in the hearing apparatus of NLE bats
(pteropodids) and all other of non-chiropteran mammals (Noijri et al. 2021).

The deep divergence of Pteropodidae from all other LE bats is depicted by our PCA (Fig. 2). Bigger
cochlea and tympanic bulla are common morphological traits to all LE bats, supporting the idea that
cochlea hypertrophy is linked to laryngeal echolocation ability (Simmons, Seymour, Habersetzer, &
Gunnell, 2008). In fact, cochlea size is known to scale with the vestibular system and to correlate
with canal morphologies which differentiate LE from NLE bats (Davies et al. 2013). We also found
that LE bats have taller braincases, which might represent the need to accommodate a brain with
different spatial constraints from NLE bats. For example, LE bats display larger auditory nuclei than
NLE (Hutcheon et al. 2002), even though their relative brain size is smaller (Jones & MacLarnon
2004; Thiagavel et al. 2018).

Within LE bats, mouth emitters significantly differed in shape from nasal and nasal/mouth emitters.
Nasal emission is an innovation in bat skull morphology and implies deep cranial rearrangements
(Pedersen 2000). The shorter and narrower palate, together with the increased length and
decreased height of the braincase seems to be connected to shape rearrangements due to the nasal
emission (and nasal/mouth emission). Cochlear features (i.e., basilar membrane length and number
of cochlea turns) correlate with echolocation frequencies (Davies et al. 2013), therefore, differences
in cochlea and tympanic bulla relative size between the two groups can relate to variation in hearing
limits or echolocation characteristics.

In terms of skull size, allometric patterns for all feeding and sensory parameters have been here
established implementing phylogenetic regression (Revell 2010). The scaling of bite force and
masticatory muscle mass with skull size was explored by Herrel et al. (2008) on 16 species providing
slopes unsurprisingly similar to those presented here on a larger sample (Table 2). Muscle mass
scales with skull size following a geometric expectation (slopes between 2.58-2.88) with temporalis
not showing significant departure from this pattern.

The allometry of sensory parameters supported a pattern established for frequency peak in some
families of insectivorous bats (Jacobs & Bastian 2018; Jones 1999; Thiagavel et al. 2017). Species
with bigger body size and, hence, longer vocal folds produce lower frequencies confirming the
negative allometry also for Start, End Frequency and Sweep Rate. Interestingly, we found no
significant association between these echolocation parameters and skull shape at broad taxonomic
scale.

Thiagavel et al. (2018) hypothesised the retention of a trade-off between vision and echolocation in
extant LE bat species. Nectar, fruit, blood, and vertebrate eating species use vision and smell in
combination with echolocation to detect and locate food items (Bahlman & Kelt 2007; Ripperger et
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al. 2019; Surlykke et al. 2013). These species share a similar hunting ecology: they hunt static food
items in cluttered environments through a passive or active gleaning mode (Denzinger & Schnitzler
2013). In contrast, insectivorous bats have evolved the use of echolocation as their main sensory
system for prey detection and pursuit of rapidly-moving prey. This might explain why we only
identified a significant association between skull shape and echolocation for some insectivorous
bats.

Molossidae within the insectivore bat families were clear outliers in skull shape morphology and this
might be due to their extremely durophagous adaptation in hunting beetles (Freeman 1981). Indeed,
they also exhibit proportionally higher bite forces when compared to sampled insectivores with
similar skull size (e.g. M. molossus with 8.4 Newton compared to Micronycteris megalotis with 2.31
Newton, Table S1). Aguirre et al. (2003) already proposed that within insectivorous species a degree
of morphological distinctiveness occur in relation to prey size and food hardness, and by sampling a
more homogenous skull shape bauplan of species within Verspertilionidae, Phyllostomidae and
Rhinolophidae, we were able to detect association with echolocation parameters. This relationship
was clearly driven by the rostral tilting which is greater in species emitting higher frequencies.
Interestingly, within this same subsample no relationship between skull shape and feeding
parameters could be detected thus questioning the idea of trade-off between feeding and
echolocation function.

Higher bite forces and larger muscles are functionally advantageous as they allow for the possible
consumption of a wider range of prey (Aguirre et al. 2003; Nogueira et al. 2009). On the other hand,
whether high frequencies are disadvantageous is debatable. A known disadvantage of high
frequencies is the range of effectiveness: atmospheric attenuation is severe, allowing detectability in
the short-field only (Lawrence & Simmons 1982). Species emitting low frequencies have a long-field
resolution but their bite force is weaker and their long rostrum is less resistant to torsion. Higher
frequencies might promote niche specialization allowing for the detection of smaller prey: the
wavelength of the sound emitted has to be shorter than the circumference of the object in order to
produce strong echoes (Jones 1999; Pye 1993). Species emitting very low frequency calls are
potentially unable to detect small preys (Barclay 1986; Barclay & Brigham 1991; Safi & Siemers
2010). It is argued, however, that most of the bats use frequencies three or more times higher than
is necessary to detect the smallest prey in their diet (Jakobsen et al. 2013). Furthermore, higher
frequencies allow for higher beam directionality which maximizes the effectiveness of the echoes in
the focal area and “isolates” echoes from the periphery (Surlykke et al. 2009). Thus, while beam
directionality and detectability of smaller prey appear to be potential advantages in niche
exploitation, the potential disadvantage is atmospheric attenuation.

In conclusion, skull diversification among bat families is mainly driven by sound emission type and
broad diet preferences. Echolocation parameters were associated with skull shape in a subsample of
insectivorous species only, suggesting that within similar feeding niches a stronger selection might
occur due to the preferential use of echolocation as sensory system. The trade-off between feeding
and echolocation function is questioned by our data analyses that instead support a predominant
impact of characteristics on skull shape variation in bats at a broad taxonomic scale.
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Figure 1 Landmark configuration on the skull of Rhinolophus ferrumequinum. Anatomical

descriptions of landmarks is in Table S4.
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Figure 2 Plot of principal component scores for all species of the dataset (n=67) displayed by
family and emission type (laryngeal echolocation: both mouth and nasal [B], nasal [R],
mouth [M]; non-laryngeal echolocation, [NLE]). Shape variation was reported on dorsal (D),
ventral (V) and lateral (L) views by warping maximum and minimum PC variation of each

axes on the reference mesh.
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Figure 3 Plot of phylo-PLS showing association between skull shape and bite force PLS vector in a
subsample of LE bats (n=61, a) and correlation between skull shape vs echolocation parameters in 17
insectivore species (b). Skull warpings show the shape variation related to the minimum (left) and
maximum (right) values PLS vector scores.
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Tables

Table 1 Functional traits used as covariates in the present study. Traits in italics were

available for only a subsample of data (n=34).

Accepted Article

Feeding parameters Sensory parameters Diet category Emission type

Bite force (BF) Peak frequency (FP) Insectivorous (1) Non-laryngeal
arhnlaratinn (NI F)

Digastric muscle (DIG) Start frequency (SF)  Frugivorous (F) Nasal (R)

Masseter muscle (MAS)  End frequency (EF)  Hematophagous (H) Mouth (M)

Temporalis muscle (TEM) Bandwidth (BW) Vertebrate eater (V) Both mouth and
nasal (R)

Pterygoid muscle (PTE) Duration (D) Nectarivorous (N)

Sweep rate (SR) Omnivorous (0)
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Frugi/insectivorous (F,l)
Necta/fruigivorous (N,F)

Insect-vertebrate eater (I,V)

Table 2 Summary statistics of PGLS models using log Centroid Size as independent variable and
feeding or sensory parameters (all log transformed) as dependent. P values are reported for both
intercept and slope (=B). In bold are the non-significant p values. 95% confidence interval is reported
for the lambda parameter estimated using maximum likelihood.
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@ Table 3 Loadings on phylo-PLS vector 1 for different functional parameters, based on analyses of
association between skull shape and functional traits, in a subsample of 61 laryngeal eholocating
ﬁ bats, 19 insectivores and the same sample after the exclusion of two Molossidae outlier (n =17).
@
B
H PLS Vector 1 Loadings
H LE bats Insectivores
N=61 N=19 N =17
< Bite Force 0.959 0.474 0.237 -
Digastric mass - 0.531 0.747 -
@ Masseter mass - 0.381 0.351 -
Temporalis mass - 0.435 0.347 -
@ Pterygoid mass - 0.388 0.376 -
H StartF (KHz) -0.035 -0.053 - -0.673
EndF (KHz) 0.155 -0.049 - -0.493
Q BW (KHz) -0.165 0.009 - -0.107
D Fpeak (KHz) 0.124 -0.050 - -0.537
O Duration (ms) 0.033 -0.018 - 0.033
O Sweepr'; ‘:;e (KHz -0.105 0.026 - -0.056
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