280 research outputs found
A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data
Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Endothelial c-REL orchestrates atherosclerosis at regions of disturbed flow through crosstalk with TXNIP-p38 and non-canonical NF-κB pathways
Aims
Atherosclerosis initiation at sites of disturbed blood flow involves heightened inflammation coupled to excessive endothelial cell (EC) proliferation. Here, we unveil the pivotal role of c-REL, a member of the NF-κB transcription factor family, in orchestrating these processes by driving dual pathological inflammatory and cell cycle pathways.
Methods and results
Analysis of cultured EC and murine models revealed enrichment and activation of c-REL at atherosusceptible sites experiencing disturbed flow. Transcriptome analysis, extensively validated in vitro and in vivo, demonstrates that endothelial c-REL drives inflammation via a TXNIP-p38 MAP kinase signalling pathway and enhances proliferation through a non-canonical NFKB2-p21 pathway. Consistent with its pivotal role in EC pathology, genetic deletion of c-Rel in EC significantly reduces plaque burden in hypercholesterolaemic mice.
Conclusion
These findings underscore the fundamental role of c-REL in endothelial responses to disturbed flow and highlight therapeutic targeting of endothelial c-REL as a potential strategy for atherosclerosis treatment
The 2024 UK clinical guideline for the prevention and treatment of osteoporosis
Summary
The National Osteoporosis Guideline Group (NOGG) has updated the revised UK guideline for the assessment and management of osteoporosis and the prevention of fragility fractures in postmenopausal women, and men age 50 years and older. This guideline is relevant for all healthcare professionals involved in osteoporosis management.
Introduction
The UK National Osteoporosis Guideline Group (NOGG) first produced a guideline on the prevention and treatment of osteoporosis in 2008, with updates in 2013, 2017 and 2021. This paper presents a minor update of the 2021 guideline, the scope of which is to review the assessment and management of osteoporosis and the prevention of fragility fractures in postmenopausal women and men aged 50 years and older.
Methods
Where available, systematic reviews, meta-analyses and randomised controlled trials have been used to provide the evidence base. Conclusions and recommendations have been systematically graded according to the strength of the available evidence.
Results
Review of the evidence and recommendations are provided for the diagnosis of osteoporosis, fracture-risk assessment and intervention thresholds, management of vertebral fractures, non-pharmacological and pharmacological treatments, including duration and monitoring of anti-resorptive therapy, glucocorticoid-induced osteoporosis, as well as models of care for fracture prevention. Recommendations are made for training, service leads and commissioners of healthcare, and for review criteria for audit and quality improvement. Specific 2024 updates include guidance on fracture risk assessment by ethnicity, Parkinson’s disease, Down’s syndrome and lower-limb amputation; furthermore, the definition of very high fracture risk has been clarified. Hormone replacement therapy (HRT) is now recommended as a first-line treatment option in younger postmenopausal women with high fracture risk and low baseline risk for adverse events; recommendations regarding abaloparatide are included; additional training resources have been added.
Conclusion
The guideline provides a comprehensive overview of the assessment and management of osteoporosis for all healthcare professionals involved in its management. This position paper has been endorsed by the International Osteoporosis Foundation and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO)
Produtividade à Desmama de Novilhas Nelore e F1 Bos taurus x Nelore e Bos indicus x Nelore
Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex
Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl
Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls
Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10−3) and candidate genes from knockout mice (P = 5.2 × 10−3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000–185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
- …
