224 research outputs found
On the multiple Borsuk numbers of sets
The Borsuk number of a set S of diameter d >0 in Euclidean n-space is the
smallest value of m such that S can be partitioned into m sets of diameters
less than d. Our aim is to generalize this notion in the following way: The
k-fold Borsuk number of such a set S is the smallest value of m such that there
is a k-fold cover of S with m sets of diameters less than d. In this paper we
characterize the k-fold Borsuk numbers of sets in the Euclidean plane, give
bounds for those of centrally symmetric sets, smooth bodies and convex bodies
of constant width, and examine them for finite point sets in the Euclidean
3-space.Comment: 16 pages, 3 figure
The Dehn invariants of the Bricard octahedra
We prove that the Dehn invariants of any Bricard octahedron remain constant
during the flex and that the Strong Bellows Conjecture holds true for the
Steffen flexible polyhedron.Comment: 13 pages, 10 figure
Evaluating the boundary and covering degree of planar Minkowski sums and other geometrical convolutions
AbstractAlgorithms are developed, based on topological principles, to evaluate the boundary and “internal structure” of the Minkowski sum of two planar curves. A graph isotopic to the envelope curve is constructed by computing its characteristic points. The edges of this graph are in one-to-one correspondence with a set of monotone envelope segments. A simple formula allows a degree to be assigned to each face defined by the graph, indicating the number of times its points are covered by the Minkowski sum. The boundary can then be identified with the set of edges that separate faces of zero and non-zero degree, and the boundary segments corresponding to these edges can be approximated to any desired geometrical accuracy. For applications that require only the Minkowski sum boundary, the algorithm minimizes geometrical computations on the “internal” envelope edges, that do not contribute to the final boundary. In other applications, this internal structure is of interest, and the algorithm provides comprehensive information on the covering degree for different regions within the Minkowski sum. Extensions of the algorithm to the computation of Minkowski sums in R3, and other forms of geometrical convolution, are briefly discussed
Quantum Feedback Control: How to use Verification Theorems and Viscosity Solutions to Find Optimal Protocols
While feedback control has many applications in quantum systems, finding
optimal control protocols for this task is generally challenging. So-called
"verification theorems" and "viscosity solutions" provide two useful tools for
this purpose: together they give a simple method to check whether any given
protocol is optimal, and provide a numerical method for finding optimal
protocols. While treatments of verification theorems usually use sophisticated
mathematical language, this is not necessary. In this article we give a simple
introduction to feedback control in quantum systems, and then describe
verification theorems and viscosity solutions in simple language. We also
illustrate their use with a concrete example of current interest.Comment: 12 pages, revtex
- …