89 research outputs found

    Manufacturing process of a brain aneurysm biomodel in PDMS using rapid prototyping

    Get PDF
    Cerebral aneurysm is an abnormal dilatation of the blood vessel into a saccular form. They can originate in congenital defects, weakening of the arterial wall with increasing age, atherosclerotic changes, trauma and infectious emboli. The in vivo experiments are an effective way of investigating the appearance, validating new practices and techniques, but beyond ethical issues, these types of experiments are expensive and have low reproducibility. Thus, to better understand the pathophysiological and geometric aspects of an aneurysm, it is important to fabricate in vitro models capable of improving existing endovascular treatments, developing and validating theoretical and computational models. Another difficulty is in the preoperative period of the non-ruptured cerebral aneurysm, known for the success of the skilled acts because there is an anatomical structure of the aneurysm as its current position. Although there are technologies that facilitate three-dimensional video visualization in the case of aneurysms with complex geometries the operative planning is still complicated, so the development of the real three-dimensional physical model becomes advantageous. In this work, the entire process of manufacturing an aneurysm biomodel using polydimethylsiloxane (PDMS) is disassembled by rapid prototyping technology. The manufactured biomodels are able to perform different hemodynamic studies, validate theoretical data, numerical simulations and assist in the preoperative planning.info:eu-repo/semantics/publishedVersio

    A Combination of Nutriments Improves Mitochondrial Biogenesis and Function in Skeletal Muscle of Type 2 Diabetic Goto–Kakizaki Rats

    Get PDF
    BACKGROUND: Recent evidence indicates that insulin resistance in skeletal muscle may be related to reduce mitochondrial number and oxidation capacity. However, it is not known whether increasing mitochondrial number and function improves insulin resistance. In the present study, we investigated the effects of a combination of nutrients on insulin resistance and mitochondrial biogenesis/function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated that defect of glucose and lipid metabolism is associated with low mitochondrial content and reduced mitochondrial enzyme activity in skeletal muscle of the diabetic Goto-Kakizaki rats. The treatment of combination of R-alpha-lipoic acid, acetyl-L-carnitine, nicotinamide, and biotin effectively improved glucose tolerance, decreased the basal insulin secretion and the level of circulating free fatty acid (FFA), and prevented the reduction of mitochondrial biogenesis in skeletal muscle. The nutrients treatment also significantly increased mRNA levels of genes involved in lipid metabolism, including peroxisome proliferator-activated receptor-alpha (Ppar alpha), peroxisome proliferator-activated receptor-delta (Ppar delta), and carnitine palmitoyl transferase-1 (Mcpt-1) and activity of mitochondrial complex I and II in skeletal muscle. All of these effects of mitochondrial nutrients are comparable to that of the antidiabetic drug, pioglitazone. In addition, the treatment with nutrients, unlike pioglitazone, did not cause body weight gain. CONCLUSIONS/SIGNIFICANCE: These data suggest that a combination of mitochondrial targeting nutrients may improve skeletal mitochondrial dysfunction and exert hypoglycemic effects, without causing weight gain

    Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Calcitonin gene-related peptide (CGRP) has a key role in migraine pathophysiology and is associated with activation of the trigeminovascular system. The trigeminal ganglion, storing CGRP and its receptor components, projects peripheral to the intracranial vasculature and central to regions in the brainstem with Aδ- and C-fibers; this constitutes an essential part of the pain pathways activated in migraine attacks. Therefore it is of importance to identify the regions within the brainstem that processes nociceptive information from the trigeminovascular system, such as the spinal trigeminal nucleus (STN) and the C1-level of the spinal cord. Immunohistochemistry was used to study the distribution and relation between CGRP and its receptor components - calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) - in human and rat STN and at the C1-level, using a set of newly well characterized antibodies. In addition, double-stainings with CGRP and myelin basic protein (MBP, myelin), synaptophysin (synaptic vesicles) or IB4 (C-fibers in general) were performed.</p> <p>Results</p> <p>In the STN, the highest density of CGRP immunoreactive fibers were found in a network around fiber bundles in the superficial laminae. CLR and RAMP1 expression were predominately found in fibers in the spinal trigeminal tract region, with some fibers spanning into the superficial laminae. Co-localization between CGRP and its receptor components was not noted. In C1, CGRP was expressed in fibers of laminae I and II. The CGRP staining was similar in rat, except for CGRP positive neurons that were found close to the central canal. In C1, the receptor components were detected in laminae I and II, however these fibers were distinct from fibers expressing CGRP as verified by confocal microscopy.</p> <p>Conclusions</p> <p>This study demonstrates the detailed expression of CGRP and its receptor components within STN in the brainstem and in the spinal cord at C1-level, and shows the possibility of CGRP acting postjunctionally in these areas putatively involved in primary headaches.</p

    Cardiac Expression of Microsomal Triglyceride Transfer Protein Is Increased in Obesity and Serves to Attenuate Cardiac Triglyceride Accumulation

    Get PDF
    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and β-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease

    Maintenance of traditional cultural orientation is associated with lower rates of obesity and sedentary behaviours among African migrant children to Australia

    Full text link
    Background: Migrants from developing to developed countries rapidly develop more obesity than the host population. While the effects of socio-economic status on obesity are well established, the influence of cultural factors, including acculturation, is not known.Objective: To examine the association between acculturation and obesity and its risk factors among African migrant children in Australia.Design and participants: A cross-sectional study using a non-probability sample of 3- to 12-year-old sub-Saharan African migrant children. A bidimensional model of strength of affiliation with African and Australian cultures was used to divide the sample into four cultural orientations: traditional (African), assimilated (Australian), integrated (both) and marginalized (neither).Main outcome measures: Body mass index (BMI), leisure-time physical activity (PA) and sedentary behaviours (SBs) and energy density of food.Results: In all, 18.4% (95% confidence interval (CI): 14&ndash;23%) were overweight and 8.6% (95% CI: 6&ndash;12%) were obese. After adjustment for confounders, integrated (&szlig;=1.1; P&lt;0.05) and marginalized &szlig;(=1.4; P&lt;0.01) children had higher BMI than traditional children. However, integrated children had significantly higher time engaged in both PA (&szlig;=46.9, P&lt;0.01) and SBs (&szlig;=43.0, P&lt;0.05) than their traditional counterparts. In comparison with traditional children, assimilated children were more sedentary (&szlig;=57.5, P&lt;0.01) while marginalization was associated with increased consumption of energy-dense foods (&szlig;=42.0, P&lt;0.05).Conclusions: Maintenance of traditional orientation was associated with lower rates of obesity and SBs. Health promotion programs and frameworks need to be rooted in traditional values and habits to maintain and reinforce traditional dietary and PA habits, as well as identify the marginalized clusters and address their needs.<br /

    Wolbachia Prophage DNA Adenine Methyltransferase Genes in Different Drosophila-Wolbachia Associations

    Get PDF
    Wolbachia is an obligatory intracellular bacterium which often manipulates the reproduction of its insect and isopod hosts. In contrast, Wolbachia is an essential symbiont in filarial nematodes. Lately, Wolbachia has been implicated in genomic imprinting of host DNA through cytosine methylation. The importance of DNA methylation in cell fate and biology calls for in depth studing of putative methylation-related genes. We present a molecular and phylogenetic analysis of a putative DNA adenine methyltransferase encoded by a prophage in the Wolbachia genome. Two slightly different copies of the gene, met1 and met2, exhibit a different distribution over various Wolbachia strains. The met2 gene is present in the majority of strains, in wAu, however, it contains a frameshift caused by a 2 bp deletion. Phylogenetic analysis of the met2 DNA sequences suggests a long association of the gene with the Wolbachia host strains. In addition, our analysis provides evidence for previously unnoticed multiple infections, the detection of which is critical for the molecular elucidation of modification and/or rescue mechanism of cytoplasmic incompatibility

    Ceruloplasmin Deficiency Reduces Levels of Iron and BDNF in the Cortex and Striatum of Young Mice and Increases Their Vulnerability to Stroke

    Get PDF
    Ceruloplasmin (Cp) is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT) controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF), known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF

    The Zinc Dyshomeostasis Hypothesis of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline

    Climate simulations for 1880-2003 with GISS modelE

    Get PDF
    We carry out climate simulations for 1880-2003 with GISS modelE driven by ten measured or estimated climate forcings. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcings, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcings are due to model deficiencies, inaccurate or incomplete forcings, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880-2003 forcings, we aim to provide a benchmark against which the effect of improvements in the model, climate forcings, and observations can be tested. Principal model deficiencies include unrealistically weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. The greatest uncertainties in the forcings are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds.Comment: 44 pages; 19 figures; Final text accepted by Climate Dynamic
    corecore