516 research outputs found

    Assessing Land Use/Cover dynamics of the Ngorongoro world heritage site in Tanzania using a hybrid CA–Markov model

    Get PDF
    This research article published by Authorea, 2021In this study, land-use/cover pattern of the UNESCO world heritage site, Ngorongoro Conservation Area; is analyzed using the CA–Markov model with the help of RS and GIS. Hybrid classification techniques ware used to monitor land use/cover changes, using Landsat images for 1995, 2005 and 2016. The CA-Markov model is then used to predict the land use /cover maps for 2025 and 2035. The highest net gain from 1995-2016 observed in cultivated land (6.55%), grassland (2.68%), bare land (1.82%), bushland (0.48%) and built-up area (0.01%), and the net loss found in woodland (8.38%), forest (1.52%), wetland (1.41%), and water cover area (0.24%). However, reduction is expected in bushland (4.88%), forest (0.82%), water (0.77%) and woodland (0.07%) during 2025-2035 with increase in cultivated land (2.73%), grassland (1.19%), bare land (1.79%) and built-up area (0.14%). As per the current trend in land use management, forest cover is significantly declining; leading to the loss in the ecological values of the Ngorongoro Conservation Area and its surroundings. The results of this study can be used directly by the policymakers to plan appropriate conservation schemes to endorse improved land use management practices for ecological protection of the heritage site

    Groundwater quality issues and challenges for drinking and irrigation uses in central ganga basin dominated with rice-wheat cropping system

    Full text link
    Increased population and increasing demands for food in the Indo-Gangetic plain are likely to exert pressure on fresh water due to rise in demand for drinking and irrigation water. The study focuses on Bhojpur district, Bihar located in the central Ganga basin, to assess the groundwater quality for drinking and irrigation purpose and discuss the issues and challenges. Groundwater is mostly utilized in the study area for drinking and irrigation purposes (major crops sown in the area are rice and wheat). There were around 45 groundwater samples collected across the study region in the pre-monsoon season (year 2019). The chemical analytical results show that Ca2+, Mg2+ and HCO3− ions are present in abundance in groundwater and governing the groundwater chemistry. Further analysis shows that 66%, 69% and 84% of the samples exceeded the acceptable limit of arsenic (As), Fe and Mn respectively and other trace metals (Cu, Zn, Pb, Cd) are within the permissible limit of drinking water as prescribed by Bureau of Indian Standard for drinking water. Generally, high as concentration has been found in the aquifer (depth ranges from 20 to 40 m below ground surface) located in proximity of river Ganga. For assessing the irrigation water quality, sodium adsorption ratio (SAR) values, residual sodium carbonate (RSC), Na%, permeability index (PI) and calcium alteration index (CAI) were calculated and found that almost all the samples are found to be in good to excellent category for irrigation purposes. The groundwater facie has been classified into Ca-Mg-HCO3 type

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Field-induced p-n transition in yttria-stabilized zirconia

    Get PDF
    Oxide ion conducting yttria-stabilised zirconia ceramics show the onset of electronic conduction under a small bias voltage. Compositions with a high yttria content undergo a transition from p-type to n-type behavior at voltages in the range 2.4 to 10 V, which also depends on oxygen partial pressure. Surface reactions have a direct influence on bulk electronic conductivities, with possible implications for voltage-induced flash phenomena and resistive switching

    Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp KNK65MA for Formate Production from CO2 Gas

    Get PDF
    NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2 reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65IVIA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k(cat)/K-B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systemsope

    Rice Phospholipase A Superfamily: Organization, Phylogenetic and Expression Analysis during Abiotic Stresses and Development

    Get PDF
    Background: Phospholipase A (PLA) is an important group of enzymes responsible for phospholipid hydrolysis in lipid signaling. PLAs have been implicated in abiotic stress signaling and developmental events in various plants species. Genome-wide analysis of PLA superfamily has been carried out in dicot plant Arabidopsis. A comprehensive genome-wide analysis of PLAs has not been presented yet in crop plant rice. Methodology/Principal Findings: A comprehensive bioinformatics analysis identified a total of 31 PLA encoding genes in the rice genome, which are divided into three classes; phospholipase A 1 (PLA 1), patatin like phospholipases (pPLA) and low molecular weight secretory phospholipase A2 (sPLA2) based on their sequences and phylogeny. A subset of 10 rice PLAs exhibited chromosomal duplication, emphasizing the role of duplication in the expansion of this gene family in rice. Microarray expression profiling revealed a number of PLA members expressing differentially and significantly under abiotic stresses and reproductive development. Comparative expression analysis with Arabidopsis PLAs revealed a high degree of functional conservation between the orthologs in two plant species, which also indicated the vital role of PLAs in stress signaling and plant development across different plant species. Moreover, sub-cellular localization of a few candidates suggests their differential localization and functional role in the lipid signaling. Conclusion/Significance: The comprehensive analysis and expression profiling would provide a critical platform for th
    corecore