291 research outputs found

    Using fluorescent lipids contributes to the active learning of principles underlying lipid signaling

    Get PDF
    The concepts of phospholipase activity is often taught in undergraduate biology and biochemistry classes and reinforced in laboratory exercises. However, very rarely does the design of these exercises allow students to directly gain experience in the use of modern instruments such as digital imaging systems and fluorescence spectrophotometers. The laboratory exercise described here involves the use of fluorescent lipids to evaluate phospholipase activity. Students use thin layer chromatography (TLC) to understand how lipids change under different conditions (i.e. abiotic and biotic stress). They explore strategies to separate, visualize and quantify lipids by TLC, digital imaging, and fluorometry. They also have increased opportunities for hands‐on practise with experimental design, liposome sample preparation, and implementation of instrumentation commonly used by experienced researchers; all while learning and applying fundamental concepts about lipids.Fil: Peppino Margutti, Micaela Yesica. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Reyna, Matias. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Villasuso, Ana Laura. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    Assessment of the potential integration of the DNA plasmid vaccine CLYNAV into the salmon genome

    Get PDF
    The European Commission mandated EFSA to review a new data package provided by the company Elanco, for the possible integration/non-integration of the DNA plasmid vaccine CLYNAV into the genome of Atlantic salmon (Salmo salar) and to indicate whether EFSA agrees with the conclusions drawn by Elanco. The vaccine is injected into fish to confer protection against pancreas disease caused by the salmonid alphavirus. The majority of the experimental data provided by the company was for muscle tissue close to the injection site and for gonadal tissue. EFSA considers that the long persistence of DNA plasmid in muscle tissue close to the injection site and the potential heritability of an integration event in gonad cells support the focus of the assessment on both these tissues. The experimental data did not provide scientifically robust evidence for a true integration event. The company overall concluded that the likelihood of integration is negligible, based on considerations in the context of the company's environmental risk assessment, but did not provide a quantitative value for the rate of integration linked to the term ‘negligible’. It is therefore not possible to evaluate this statement specifically with regard to integration rates. EFSA notes that knowledge about homologous and non-homologous integration predicts that integration could occur with certain frequency. Therefore, EFSA has constructed worst-case scenarios leading to upper estimates for possible integration rates of the DNA plasmid vaccine into the Atlantic salmon genome. EFSA concludes that, based on the worst-case scenarios described here and taking into account additional factors decreasing the likelihood of integration, the actual integration rate is likely to be orders of magnitude lower than the upper estimated integration rate calculated in the context of the worst-case scenarios. With the available evidence, the actual integration rate cannot be estimated with more precision

    How to solve problems in micro- and nanofabrication caused by the emission of electrons and charged metal atoms during e-beam evaporation

    Full text link
    We discuss how the emission of electrons and ions during electron-beam-induced physical vapor deposition can cause problems in micro- and nanofabrication processes. After giving a short overview of different types of radiation emitted from an electron-beam (e-beam) evaporator and how the amount of radiation depends on different deposition parameters and conditions, we highlight two phenomena in more detail: First, we discuss an unintentional shadow evaporation beneath the undercut of a resist layer caused by the one part of the metal vapor which got ionized by electron-impact ionization. These ions first lead to an unintentional build-up of charges on the sample, which in turn results in an electrostatic deflection of subsequently incoming ionized metal atoms towards the undercut of the resist. Second, we show how low-energy secondary electrons during the metallization process can cause cross-linking, blisters, and bubbles in the respective resist layer used for defining micro- and nanostructures in an e-beam lithography process. After the metal deposition, the cross-linked resist may lead to significant problems in the lift-off process and causes leftover residues on the device. We provide a troubleshooting guide on how to minimize these effects, which e.g. includes the correct alignment of the e-beam, the avoidance of contaminations in the crucible and, most importantly, the installation of deflector electrodes within the evaporation chamber.Comment: 13 pages, 7 figure

    Relaxation lifetimes of plasmonically enhanced hybrid gold-carbon nanotubes systems

    Get PDF
    Recently, we introduced a novel hybridization route for carbon nanotubes using gold nanoparticles, whose close proximity neatly enhances their radiative emission. Here we investigate the mechanisms behind the enhancement by monitoring the de-excitation dynamics of our π-hybrids through two-color pump- probe time-resolved spectroscopy. The de-excitation process reveals a fast component and a slow component. We find that the presence of gold prominently affects the fast processes, indicating a stronger influence of the gold nanoparticle on the intra-band non-radiative relaxation than on the inter-band recombination of the single-walled carbon nanotube. By evaluating the de- excitation times, we estimate the balance between near-field pumping and the faster metal-induced de-excitation contributions, proving the enhanced pumping to be the leading mechanism

    Saturation Behavior: a general relationship described by a simple second-order differential equation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The numerous natural phenomena that exhibit saturation behavior, <it>e.g</it>., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches.</p> <p>Results</p> <p>For the general saturation curve, described in terms of its independent (<it>x</it>) and dependent (<it>y</it>) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study.</p> <p>Conclusions</p> <p>The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.</p

    Preserving π-conjugation in covalently functionalized carbon nanotubes for ptoelectronic applications

    Get PDF
    Covalent functionalization tailors carbon nanotubes for a wide range of applications in varying environments. Its strength and stability of attachment come at the price of degrading the carbon nanotubes sp2 network and destroying the tubes electronic and optoelectronic features. Here we present a non- destructive, covalent, gram-scale functionalization of single-walled carbon nanotubes by a new [2+1] cycloaddition. The reaction rebuilds the extended π-network, thereby retaining the outstanding quantum optoelectronic properties of carbon nanotubes, including bright light emission at high degree of functionalization (1 group per 25 carbon atoms). The conjugation method described here opens the way for advanced tailoring nanotubes as demonstrated for light-triggered reversible doping through photochromic molecular switches and nanoplasmonic gold-nanotube hybrids with enhanced infrared light emission

    Preserving p-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications

    Get PDF
    Covalent functionalization tailors carbon nanotubes for a wide range of applications in varying environments. Its strength and stability of attachment come at the price of degrading the carbon nanotubes sp 2 network and destroying the tubes electronic and optoelectronic features. Here we present a non-destructive, covalent, gram-scale functionalization of single-walled carbon nanotubes by a new 2+1] cycloaddition. The reaction rebuilds the extended p-network, thereby retaining the outstanding quantum optoelectronic properties of carbon nanotubes, including bright light emission at high degree of functionalization (1 group per 25 carbon atoms). The conjugation method described here opens the way for advanced tailoring nanotubes as demonstrated for light-triggered reversible doping through photochromic molecular switches and nanoplasmonic gold-nanotube hybrids with enhanced infrared light emission

    The Ubiquitous Conserved Glycopeptidase Gcp Prevents Accumulation of Toxic Glycated Proteins

    Get PDF
    Amadori-modified proteins (AMPs) are the products of nonenzymatic glycation formed by reaction of reducing sugars with primary amine-containing amino acids and can develop into advanced glycated end products (AGEs), highly stable toxic compounds. AGEs are known to participate in many age-related human diseases, including cardiovascular, neurological, and liver diseases. The metabolism of these glycated proteins is not yet understood, and the mechanisms that reduce their accumulation are not known so far. Here, we show for Escherichia coli that a conserved glycopeptidase (Gcp, also called Kae1), which is encoded by nearly every sequenced genome in the three domains of life, prevents the accumulation of Amadori products and AGEs. Using mutants, we show that Gcp depletion results in accumulation of AMPs and eventually leads to the accumulation of AGEs. We demonstrate that Gcp binds to glycated proteins, including pyruvate dehydrogenase, previously shown to be a glycation-prone enzyme. Our experiments also show that the severe phenotype of Gcp depletion can be relieved under conditions of low intracellular glycation. As glycated proteins are ubiquitous, the involvement of Gcp in the metabolism of AMPs and AGEs is likely to have been conserved in evolution, suggesting a universal involvement of Gcp in cellular aging and explaining the essentiality of Gcp in many organisms

    Iron and Manganese Containing Multi‐Walled Carbon Nanotubes as Electrocatalysts for the Oxygen Evolution Reaction ‐ Unravelling Influences on Activity and Stability

    Get PDF
    Hydrogen economy is a central aspect of future energy supply, as hydrogen can be used as energy storage and fuel. In order to make water electrolysis efficient, the limiting oxygen evolution reaction (OER) needs to be optimized. Therefore, C‐based composite materials containing earth‐abundant Fe and Mn were synthesized, characterized and tested in the OER. For pyrolysis temperatures above 700 °C N‐rich multi‐walled carbon nanotubes (MWCNT) are obtained. Inside the tubes Fe3C particles are formed, Fe and Mn oxides are incorporated in the carbon matrix and metal spinel nanoparticles cover the outer surface. The best catalyst prepared at 800 °C achieves a low overpotential of 389 mV (at 10 mA/cm2) and high stability (22.6 h). From electrochemical measurements and characterization it can be concluded that the high activity is mainly provided by MWCNT, Fe3C and the metal oxides in the conductive carbon matrix. The metal spinel nanoparticles in contrast protect the MWCNT from oxidation and thereby contribute to the high stability.BMBF, 03SF0508, Clusterprojekt "MANGAN"; Teilprojekt: Entwicklung neuartiger Mangankomplexe zur elektrokatalytischen Generierung von Sauerstoff und Wasserstoff aus Wasse
    corecore