870 research outputs found

    Phytochemical profiles and antioxidant capacity of pigmented and non-pigmented genotypes of rice (Oryza sativa L.)

    Get PDF
    Pigmented rice (Oryza sativa L.) genotypes become increasingly important in the agroindustry due to their bioavailable compounds that have the ability to inhibit the formation and/or to reduce the effective concentration of reactive cell-damaging free radicals. This study aimed at determining the concentrations of free, and bound phytochemicals and their antioxidant potential (DPPH and ABTS assays) as well as the vitamin E and carotenoids contents of non-pigmented and pigmented rice genotypes. The results confirmed that the content of total phenolics and flavonoids contents, as well as the antioxidant capacity (DPPH and ABTS assays) of pigmented rice was several-fold greater than non-pigmented ones (4, 4, 3 and 5 times, respectively). Compounds in the free fraction of pigmented rice had higher antioxidant capacity relative to those in the bound form, whereas the non-pigmented rice cultivars exhibited the opposite trend. Ferulic acid was the main phenolic acid of all rice genotypes, whereas black rice contained protocatechuic and vanillic acids in higher contents than red rice and non-pigmented rice genotypes. For vitamin E (tocopherols and tocotrienols) and carotenoids (lutein, zeaxanthin and β-carotene) contents, no obvious concentration differences were observed between non-pigmented and pigmented rice, with the black rice exhibiting the highest carotenoid content. Overall, pigmented rice genotypes contain a remarkable amount of bioactive compounds with high antioxidant capacity; therefore, they have great potential as a source of bioactives for developing functional food products with improved health benefits

    Primary amino acid composition and its use in discrimination of Greek red wines with regard to variety and cultivation region

    Get PDF
    The primary amino acid content of 54 Greek red wines from several regions and grape varieties was determined by reversed-phase high performance liquid chromatography (HPLC) using precolumn derivatization with OPA (o-phthalaldehyde) and fluorescence detection. For each wine sample, 21 amino acids have been determined. Wine samples from the 4 most common Greek red grape cultivars, which are part of the Greek VQPRD (Vins de Qualité Produits dans des Regions Délimitees) wines, and from 4 foreign red grape varieties, were used. Wines from cv. Kotsifali had the highest amino acid content among the samples from indigenous varieties, followed by those originating from cvs Agiorgitiko, Mandilaria and Xinomavro. In contrast to wines from cv. Grenache rouge, which contained high amounts of amino acids, those from Cabernet Sauvignon, Syrah and Merlot had lower amounts. A classification of samples on the basis of variety and region was achieved by application of the discriminant analysis of the amino acid composition data. 22 % of the wine samples, originating from grapes cultivated in 'organic vineyards', had a low arginine content.

    Effect of b-glucan molecular weight on rice flour dough rheology, quality parameters of breads and in vitro starch digestibility

    Get PDF
    Producción CientíficaThe study aimed at investigating the effects of molecular weight(peak molecular weight, Mp, 83, 192 and 650 kDa) and level (1.3, 2.6 and 3.9 g/100 g flour basis) of enriched in β-glucan (BG) concentrates (from oat and barley) added into rice flour gluten-free (GF) doughs on their viscoelastic and pasting properties, as well as the quality parameters of bread and the in vitro starch digestibility. A purification process of a commercial BG concentrate, followed by an acid hydrolysis step were employed to reduce the content of interfering excipients (e.g. maltodextrins) and obtain preparations with a range of molecular weights. BG-enriched GF breads of improved quality, that can fulfil the EFSA claims (ingest of 3 g of BG per day with a daily bread intake of ∼200 g of bread), were obtained, exhibiting slower starch digestibility (in vitro assay) dependent on the molecular weight and concentration of BG. With the higher Mp BG used, showing the largest impact on dough rheology characteristics and having a greater potential for health benefits, higher specific volume and lower bread crumb hardness were noted among the GF breads. The medium and lowest Mp BG also had an influence on dough rheological behavior and bread quality attributes. The rapidly available glucose of the bread decreased from 81g/100 g to 72g/100 g as result of the 3.9g/100 g addition of the highest Mp BG in the GF formulations

    Effect of Microwave Radiation Pretreatment of Rice Flour on Gluten-Free Breadmaking and Molecular Size of β-Glucans in the Fortified Breads

    Get PDF
    Producción CientíficaCereal β-glucan concentrates can be used in gluten-free breads to improve dough handling properties and quality of final products as well as to enhance their nutritional value; however, the presence of endogenous β-glucanases in rice flour, in combination with prolonged mixing, fermentation and proofing time, can cause a substantial reduction in β-glucan molecular weight, affecting detrimentally their efficacy for bioactivity. In this study, microwave (MIWA) heating was applied to the rice flours before breadmaking at different flour water contents (13-25%) and treatment times (0- 4min) to reduce β-glucanase activity. Gluten-free breads made from the MIWA treated rice flours were fortified with oat β-glucan concentrate to enhance their nutritional profile. The molecular weight of added β-glucan in the final products increased with increasing both flour water content and time of MIWA treatment, reflecting the magnitude of residual β-glucanase activity in the flour. Pretreatment with MIWA radiation for 4 min of the rice flour tempered at 25% moisture resulted in negligible residual β-glucanase activity and preserved to a great extent the molecular weight of β-glucans in the enriched breads. End-product quality was not affected by flour MIWA pretreatment, and even a slightly higher loaf specific volume was noted for breads made from the MIWA -treated flours (4min MIWA at 25% moisture content) compared to that of untreated flour. These findings can contribute to the improvement of nutritional value of rice-based gluten-free breads for celiac consumers as well as of any β-glucan containing yeast-leavened bakery product without altering its sensorial attributes. Additional studies are still required for further evaluation of the effect of more intense microwave treatment on rice flour and its application on breadmaking

    Impact of acidification and protein fortification on thermal properties of rice, potato and tapioca starches and rheological behaviour of their gels

    Get PDF
    Producción CientíficaThe impact of acidification and non-gluten protein fortification (egg-albumin and soy-protein isolate) on thermal transitions of rice, potato and tapioca starches as well as the viscoelastic properties of their gels prepared at two casting temperatures, 90ºC and 120ºC, was investigated. The thermal and rheological behaviour of starches depended on their botanical origin and were significantly influenced by the presence and type of protein added as well as by the pH of the aqueous dispersion. Acidification to pH 4.5 increased the gelatinization temperature of rice starch in the presence of albumin or soy proteins, while reduced it in the case of tapioca starch, regardless of the presence of proteins. Acidification of rice starch dispersions decreased significantly the apparent gelatinization enthalpy; this effect was even greater in the presence of proteins. The addition of proteins brought about a structuring effect on tapioca gels leading to higher viscoelastic moduli and lower tan δ values. In general, acidification led to weaker gel structures, with more pronounced effect for potato starch, most likely related to its higher phosphate content (charge screening). Much weaker gels were obtained at 120ºC compared to those processed at lower temperatures; however, protein incorporation reinforced gel structure, an effect that was not observed in gels formed at 90º, as also revealed by microstructure analysis using confocal scanning laser microscopy. In conclusion, protein addition and pH adjustments of aqueous starch dispersions can provide an effective means to modulate the functional and textural properties of gel-like starch-based gluten-free formulations.Ministerio de Economía, Industria y Competitividad - FEDER (Projects AGL2012-35088 and AGL2015-63849-C2-2-R)Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA072P17

    Inactivation of Endogenous Rice Flour β-Glucanase by Microwave Radiation and Impact on Physico-chemical Properties of the Treated Flour

    Get PDF
    Producción CientíficaThe apparent reduction of β-glucan (BG) molecular weight in rice based gluten-free (GF) breads fortified with cereal BG concentrates reveals the presence of β-glucanase activity in rice flour. Inactivation of endogenous β-glucanase in rice flour thus seems to be necessary step when developing GF breads enriched with BG of high molecular-weight. The aim of this work was to study the thermal inactivation of endogenous β-glucanase in rice flour by means of microwave (MW) processing; rice flours preconditioned at four different moisture levels (13%, 16%, 19%, 25%) were treated by MW radiation at 900 W and five MW treatment times (ranging from 40s to 8 min, applied stepwise at 20s intervals). The effects of microwaves on starch crystallinity, pasting and thermal properties of MW-treated rice flours were also explored. The β-glucanase activity in rice flours was assessed by the rate of decrease in specific viscosity of a dilute solution of a purified β-glucan preparation, upon addition of flour extracts. MW proved to be a useful alternative for thermal inactivation of endogenous β-glucanase in rice flours when applied to moistened samples. The inactivation process followed a first order kinetic response and the apparent rate constant of thermal inactivation increased exponentially with the moisture content of the flour, M, according to the equation 0.0146·exp (0.212·M) (R2 = 0.97). The MW time required for complete β-glucanase inactivation was only 4 min when the initial flour moisture increased to 25%. Following MW treatment, the starch crystallinity was unaffected (p>0.05) and the side effects of the treatment on flour pasting and thermal properties were rather negligible.Ministerio de Economía, Industria y Competitividad - FEDER (Projects AGL2012-35088 and AGL2015-63849-C2-2-R

    Sodium ion interaction with psyllium husk (Plantago sp.)

    Get PDF
    The nature of and factors effecting sodium interactions with psyllium were investigated in vitro. In a batch extraction system, psyllium mucilage gel retained at least 50% of sodium across a range of concentrations (5–300 mg sodium per g psyllium) and pH (2–10) environments. FTIR and Na NMR analyses of psyllium gels indicated that binding was complex with non-specific multi-site interactions. The potential use of psyllium husk as a binding agent for the reduction of bioavailable sodium was therefore evaluated. The binding of sodium at physiologically relevant conditions (pH 1.2 (stomach) and 6.8 (intestine)) was studied in a gastrointestinal tract (GIT) pH simulated model. Results show consistently high sodium retention (∼50%) across the GIT model and less than 20% loss of bound sodium under the simulated intestinal pH conditions after repeated washings

    Digestibility of resistant starch containing preparations using two in vitro models

    Get PDF
    BACKGROUND: Resistant starch (RS) is known for potential health benefits in the human colon. To investigate these positive effects it is important to be able to predict the amount, and the structure of starch reaching the large intestine. AIM OF THE STUDY: The aim of this study was to compare two different in vitro models simulating the digestibility of two RS containing preparations. METHODS: The substrates, high amylose maize (HAM) containing RS type 2, and retrograded long chain tapioca maltodextrins (RTmd) containing RS type 3 were in vitro digested using a batch and a dynamic model, respectively. Both preparations were characterized before and after digestion by using X-Ray and DSC, and by measuring their total starch, RS and protein contents. RESULTS: Using both digestion models, 60-61 g/100 g of RTmd turned out to be indigestible, which is very well in accordance with 59 g/100 g found in vivo after feeding RTmd to ileostomy patients. In contrast, dynamic and batch in vitro digestion experiments using HAM as a substrate led to 58 g/100 g and 66 g/100 g RS recovery. The degradability of HAM is more affected by differences in experimental parameters compared to RTmd. The main variations between the two in vitro digestion methods are the enzyme preparations used, incubation times and mechanical stress exerted on the substrate. However, for both preparations dynamically digested fractions led to lower amounts of analytically RS and a lower crystallinity. CONCLUSIONS: The two in vitro digestion methods used attacked the starch molecules differently, which influenced starch digestibility of HAM but not of RTmd

    Agro-materials : a bibliographic review

    Get PDF
    Facing the problems of plastic recycling and fossil resources exhaustion, the use of biomass to conceive new materials appears like a reasonable solution. Two axes of research are nowadays developed : on the one hand the synthesis of biodegradable plastics, whichever the methods may be, on the other hand the utilization of raw biopolymers, which is the object of this paper. From this perspective, the “plastic” properties of natural polymers, the caracteristics of the different classes of polymers, the use of charge in vegetable matrix and the possible means of improving the durability of these agro-materials are reviewed
    corecore