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Abstract  

The apparent reduction of β-glucan (BG) molecular weight in rice based gluten-free 

(GF) breads fortified with cereal BG concentrates reveals the presence of β-

glucanase activity in rice flour. Inactivation of endogenous β-glucanase in rice flour 

thus seems to be necessary step when developing GF breads enriched with BG of 

high molecular-weight. The aim of this work was to study the thermal inactivation of 

endogenous β-glucanase in rice flour by means of microwave (MW) processing;  rice 

flours preconditioned at four different moisture levels (13%, 16%, 19%, 25%) were 

treated by MW radiation at 900 W and five MW treatment times (ranging from 40s 

to 8 min, applied stepwise at 20s intervals). The effects of microwaves on starch 

crystallinity, pasting and thermal properties of MW-treated rice flours were also 

explored. The β-glucanase activity in rice flours was assessed by the rate of decrease 

in specific viscosity of a dilute solution of a purified β-glucan preparation, upon 

addition of flour extracts. MW proved to be a useful alternative for thermal 

inactivation of endogenous β-glucanase in rice flours when applied to moistened 

samples. The inactivation process followed a first order kinetic response and the 

apparent rate constant of thermal inactivation increased exponentially with the 

moisture content of the flour, M, according to the equation 0.0146·exp (0.212·M)  

(R2 = 0.97). The MW time required for complete β-glucanase inactivation was only 4 
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min when the initial flour moisture increased to 25%. Following MW treatment, the 

starch crystallinity was unaffected (p>0.05) and the side effects of the treatment on 

flour pasting and thermal properties were rather negligible.  
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1. Introduction 

The (1-3) (1-4) β-D-glucans (BG) are major components of cell walls in the starchy 

endosperm and the aleurone layer of commercially important cereals, mostly oat and 

barley and to a lesser extent rye and wheat (Lazaridou and Biliaderis 2007). These 

polysaccharides are classified as soluble dietary fibre with well recognized 

nutrtitional implications as specified in several health claims authorized by many 

regulatory authorities around the globe. The US Food and Drug Administration 

(USFDA) (2005) has approved a health claim for the reduction of coronary heart 

disease risk with a daily consumption of 3g of β-glucan soluble fiber from whole 

grain barley or oat and dry milled barley/oat grain products as part of a low saturated 

fat and low cholesterol diet. Recently, the European Food Safety Authority (EFSA) 

has also authorized a health claim, according to which barley β-glucan ingestion 

leads to the reduction of blood plasma cholesterol levels, which is a major risk factor 

for the development of coronary heart disease (EFSA 2011a); the recommended 

daily intake is 3g of oat β-glucan as part of a balanced diet. Other health claims for 

oat and barley β-glucans were also approved by EFSA concerning the reduction in 

post-prandial glycemic responses, at doses of about 4g of β-glucans per 30g of 

available carbohydrates in bread and pasta products (EFSA 2011b), and the increase 

of faecal bulk (EFSA 2011c); the latter claim can be used for foods containing barley 

or oat grain fiber at least 6g/100g product or 3g/100 kcal. 

On the other hand, the demand for gluten-free products steadily increases. Although 

several gluten free (GF) products are nowadays available on the market, baked 

products with gluten-free ingredients are generally of poor nutritional and sensorial 

quality and exhibit undesirable physicochemical properties; i.e. they contain low 

amounts of fibre, vitamins and other essential nutrients, which exert a worsening 



effect on the already nutritionally unbalanced diet of celiac disease (CD) sufferers 

(Thomson 2009). Despite the current trend for development of food products with 

improved nutritional quality, the GF products often receive only marginal attention 

from a formulation point of view. The enrichment of GF breads and other bakery 

items (cookies, pasta products, etc.) with BG, holds a special interest among the 

vulnerable population of celiac patients which encounters a significant incidence rate 

of other associated chronic diseases, such as obesity and diabetes due to higher fat 

and caloric intensity diets (Cronin and Shanahan 1997).  

Rice flour is the most suitable ingredient for GF bakery formulations due to its bland 

taste, white colour, digestibility and hypoallergenic properties. Other attributes such 

as the low content of protein and sodium as well as the presence of easily digested 

carbohydrates are additional benefits (Rosell et al. 2014). Furthermore, in rice flour, 

the ratio of albumin-globulin-prolamin-glutelin is rather unique among the cereals, 

revealing  a high concentration in glutelins and low in prolamins. As with other 

cereals, rice proteins are deficient in the essential amino acid lysine, but as a 

consequence of the respective ratio of protein fractions, rice has higher content of 

lysine than other cereals, and this is shared by oats (Rosell et al. 2014).  

Previous works have demonstrated the potential of baking rice-based GF breads 

enriched with commercial BG concentrates to fulfill the EFSA health claim 

requirements as well as to provide products with acceptable quality (Perez-Quirce et 

al. 2014; Ronda et al. 2015). In these studies, although the final content of BG in the 

bread was not affected, the molecular weight of BG was notably reduced compared 

with the initial concentrate used as ingredient in the formulation mixture (Hager et al. 

2011; Ronda et al. 2015).   

The ability of β-glucans to decrease serum cholesterol levels and moderate the 

glycemic responses is often linked to the potential of these polysaccharides to 

enhance the viscosity of the intestinal contents (Tosh et al. 2008; Wolever et al. 

2010). Since the viscosity of a β-glucan solution is a function of its molecular weight 

and polysaccharide concentration, the intensity of MW treatment and the amount of 

water-extractable β-glucans in a given food product can influence the extent of their 

physiological effect (Brummer et al. 2012; Lazaridou and Biliaderis 2007; Tosh 

2013; Tosh et al. 2008; Wolever et al. 2010). In order to retain the full physiological 



impact of β-glucan in formulated products it is therefore crucial to minimize its 

depolymerization (hydrolysis) during food processing and storage. This is a 

challenging problem during production of β-glucan enriched bread, since the activity 

of endogenous flour β-glucanases, in combination with the long contact time during 

mixing of ingredients, fermentation and proofing, can cause a substantial reduction in 

β-glucan molecular weight (Aman et al. 2004; Andersson et al. 2004; Trogh et al. 

2004).  

The role of enzymes from wheat flour in β-glucan degradation during dough 

handling has been demonstrated by Moriartey et al (2010), who showed that ethanol 

refluxed wheat flour (resulting in enzyme inactivation) gave lower β-glucan 

degradation and higher extract viscosities from doughs prepared with added barley β-

glucan concentrate. The addition of yeast, on the other hand, did not seem to affect β-

glucan degradation (Andersson et al. 2004; Moriartey et al. 2010) nor did differences 

in fermentation temperature or the water addition (Andersson et al. 2004). Andersson 

et al. (2004) also suggested that the baking process itself does not result in further 

degradation of the polysaccharide, whereas the endogenous β-glucanase activity in 

flour (wheat or barley) and reaction time in the dough system (during mixing, 

fermentation and proofing) are the most important determinants of β-glucan 

degradation during production of β-glucan enriched breads (Andersson et al. 2004; 

Moriartey et al. 2010). Inactivation of flour enzymes and the use of relatively short 

processing times have been proposed as effective means to minimize β-glucan 

degradation (Andersson et al. 2004; Moriartey et al. 2010; Vatandoust et al. 2012). 

However, adopting long mixing and fermentation-proofing regimes is often crucial 

for quality parameters of the final products, i.e. improved loaf volume, crumb 

porosity and texture. Thus the reduction of fermentation time to avoid β-glucan 

degradation does not appear as a feasible-practical approach. Consequently, the 

destruction of β-glucanase activity in raw flour materials seems to be a necessary and 

convenient step to develop breads enriched with BG of high molecular weight. 

Endogenous β-glucanase activity has not been demonstrated in rice flour so far. In 

spite of the low BG content of rice flour, that would make someone to anticipate a 

rather low β-glucanase activity, an apparent reduction of the BG molecular weight in 

rice based GF breads, fortified with barley and oat BG concentrates, has pointed 



towards the presence of β-glucanase activity in rice flour (Ronda et al. 2015; Hager 

et al. 2011).  

The aim of this work was to study the inactivation of β-glucanase enzymes in rice 

flour by means of microwave treatments (MW). Some of the methods previously 

used to inactivate β-glucanase activity are autoclaving, scalding, oven heating and 

ethanol refluxing (Lazaridou et al. 2014; Rieder et al. 2015; Moriartey et al. 2010). 

However, there is no literature information on the use of microwave heating for 

inactivation of β-glucanase enzymes. The high efficiency and the relatively short 

treatments adopted in MW processing, in comparison to other conventional heating 

procedures, led us to explore this alternative method for thermal inactivation of the 

endogenous rice flour β-glucanase. Only few works, with promising results, have 

been reported till now on flours or whole cereal grain stabilization by MW (Jiaxun-

Tao et al. 1993). In rice processing MW has been applied to control the growth of 

pests and mildew (Zhao et al. 2007) as well as to inactivate lipases and lipoxygenase 

enzymes in order to increase its stability during storage (Chang and El-Dash 1998; 

Zhong et al. 2013).  

In other heat treatments of flours (e.g. autoclaving), hydration has been identified as 

a critical parameter for successful β-glucanase inactivation in barley flours 

(Lazaridou et al. 2014); only in flours with the highest moisture content there was a 

full destruction of this enzyme. Taken this into account and the fact that the principle 

of microwave heating is mainly based on water molecules polarization, a study of the 

effect of rice flour moisture content on β-glucanase inactivation kinetics by MW 

seemed to be necessary. Moreover, to limit starch gelatinization during the thermal 

processing stage the moisture content of the flour was kept below 30% (Biliaderis et 

al. 1980; Maache-Rezzoug et al. 2008; Biliaderis 2009). The effect of MW heating 

under these conditions on starch crystallinity, pasting and thermal properties of 

microwaves-treated rice flours was also tested. 

 

 

 

 



2. Materials and methods 

2.1. Materials 

Sixteen different rice flour samples, varying in moisture content and hydrothermal 

treatment using MW, were examined in this work as specified in Table 1. Rice flour 

from an Indica variety was supplied by Herba Ricemills SLU (Tarragona, Spain), 

having 13.12% moisture, 79.1% starch, 0.46% ash, 7.5% protein and 0.49% fat. The 

particle size distribution of the flour was 6% > 150 µm, 150 µm > 63.2% > 100 µm 

and 30.8% < 100 µm) (data provided by the manufacturer). 

2.2. Methods 

Several preliminary tests were conducted in order to establish the working conditions 

for microwave treatment. A particular  attention was paid to achieve a uniform 

temperature and constant water content during the process. The initial moisture 

content of the rice flour was measured following the AACC 49.19 method, and the 

water needed to adjust it to the selected value was calculated. Flours were sprayed 

with the appropriate amount of water while they were mixed in a Kitchen-Aid 

(Model 5KPM50, Kitchen Aid, St. Joseph, MI, USA) mixer for 10 min. The samples 

were then allowed to stand 24 h at 4±2 ºC in order to equilibrate the moisture. Four 

different water contents (13%, 16%, 19%, 25%) and five microwave treatment times, 

(1, 2, 4 and 8 min for moistures of 13 to 19%, and 40 s, 1, 2, 4 min for 25% 

moisture) were tested. The β-glucanase activity of untreated flour, was taken as the 

value corresponding to zero time conditions. 

2.2.1. Microwave Treatment of Flour Samples 

Rice flours were heated in a Panasonic Inverter NN-GD566M (Osaka, Japan) 

microwave oven. The frequency of microwave radiation was 2450 MHz. Samples of 

hydrated flours (50.0 g) were introduced into (polyamide + polypropylene) bags of 

20 x 30 cm (NOP101, Cryovac, Sealed air, NY, USA) and hermetically closed by 

heat-sealing (Magneta 300 MG model, brand Audio Elektro, Holland) in order to 

maintain the moisture content constant during the MW treatment. All samples were 

spread out to form a thin layer inside the bag (layer thickness  1 mm) to ensure a 

uniform moisture and temperature distribution in the flour during treatment. The 

microwaves dish, where the sample was placed, rotated during the treatment to 



assure a good distribution of MW energy in the sample. The microwaves power, 

900W, was applied in cycles of 20 seconds intervals combined with downtimes of 1 

min. Under these conditions the sample bags withstood the water vapor pressure 

without breaking during the treatment. Between stops the packed flours were 

manually mixed by moving and turning the bags to facilitate a common temperature 

within the sample. Samples were subsequently left to cool for 30 min and then were 

stored at 4 °C until further analyses. The moisture contents of the flour before and 

after the microwave treatment were determined following the AACC 49.19 method . 

Water losses did not exceed 1%, which implies a good hermetic sealing of the bags. 

Previous tests have showed a marked loss of water in samples processed in non-

hermetically closed containers; i.e. samples in open containers treated for 6 min in 

the microwave oven exhibited moisture losses from 13% to 5%. Some experiments 

described in literature also used open or non-hermetically closed containers (glass 

beakers sealed with a perforated polyethylene film), but the moisture retention in the 

samples was not reported. As moisture shows a marked effect on heat-induced 

inactivation of enzymes in plant materials, its control seems of extreme importance 

in order to obtain conclusive results; therefore, sealing of the bags was adopted in all 

experimental trials of the present study. The temperature evolution over time of the 

microwave treatment was monitored with an infrared thermometer Testo 826-T2 

(Lenzkirch, Germany) in the shutdown periods of the treatment cycles. All 

microwave treatments were carried out at least in duplicate.  

2.2.2. β-Glucanase Activity Determination 

The β-glucanase activity in control and hydrothermally treated rice flours was 

assessed by measuring the rate of decrease in specific viscosity of a dilute solution of 

a pure β-glucan preparation, following addition of flour extracts, according to the 

method reported in a previous work (Lazaridou et al. 2014). The flour extracts were 

obtained by aqueous extraction (flour: water 1:10) under stirring at 25 ºC for 30 min 

and subsequent centrifugation at 2500 g for 20 min. An aliquot (6 ml) of the resultant 

supernatant was added to 36 ml of the aqueous solution (0.1% w/v) of a high 

molecular weight (2x106) β-glucan preparation (purity 95%). The mixture of flour 

extract with the β-glucan solution was then transferred into an Ubbelohde glass 

capillary viscometer (UBBEL04NC, K 0.01, range 2-10 cSt, brand Paragon 

Scientific Ltd, Wirral, UK) and the specific viscosity (ηsp = (-o)/o, where o is the 



viscosity of water) was measured over 1h period at 20±0.1 ºC every 5 min intervals. 

The ηsp data versus time were fitted to a linear regression model and the β-glucanase 

activity in rice flours was calculated from the slope of the fitted line and expressed as 

the decrease in specific viscosity per hour of the pure β-glucan solution upon 

addition of the flour extracts. The principle of this procedure is based on the linear 

relationship between the intrinsic viscosity and the molecular weight of some 

polymers in solution which, in turn, follows an inverse linear response 

(depolymerization) with the reaction time when the polymer, i.e. β-glucan, is 

subjected to a random depolymerization by the action of β-glucanase (Rieder et al. 

2015). At low polymer concentrations specific viscosity can be used instead of 

intrinsic viscosity (Hjerde et al. 1994). Residual β-glucanase activity of each treated 

flour sample was analyzed at least in triplicate. 

2.2.3 β-Glucanase Inactivation Kinetics 

The β-glucanase activity values obtained in duplicate from heat treated flours under 

the sixteen treatment conditions, plus the untreated flour activity value, were fitted 

against the flour moisture and the time of microwave treatment using a nonlinear 

multivariate regression model. The individual effect of the time of microwaves 

application on β-glucanase inactivation kinetics at each level of moisture content of 

the flour was described by a first order kinetic model, according to the equation, A = 

A0 exp (-k·t), where A is the β-glucanase activity, t is the time of the microwave 

treatment, A0 is a constant that represents the initial activity of the untreated flour (t 

= 0); and k (min-1) is the apparent rate of enzyme inactivation,  representing the 

reduction of enzyme activity per unit time. The flour moisture content also had a 

marked effect on the rate constant k which varied exponentially with it.  

2.2.5. Pasting Properties of Flours 

Pasting properties were studied by using the Rapid Visco Analyzer (RVA-4, 

Newport Scientific Pvt. Ltd., Australia) using ICC Standard method 162. The pasting 

temperature (PT), peak time (when peak viscosity occurred) (VT), peak viscosity 

(PV), holding strength or trough viscosity (TV), breakdown (BD), final viscosity 

(FV) and setback (final viscosity minus peak viscosity) (SB) were calculated from 

the pasting curve using Thermocline v.2.2 software. Viscoamylography of aqueous 



flour dispersions (3 g of flour 14% moisture basis to 28 g total weight with distilled 

water) was carried out in triplicate. 

2.2.6. X-ray Diffraction 

Samples were analyzed using a Bruker D8 Discover A25 diffractometer (Bruker 

AXS, Rheinfelden, Germany) equipped with a copper tube operating at 40 kV and 

40mA, using the CuKa radiation of 0.154-nm wavelength. Diffractograms were 

obtained by scanning from 5° to 40° (2θ) at a rate of 1.2°/min, a step size of 0.02°, a 

divergence slit width variable (DS) of 5mm and a scatter slit width (SS) of 2.92° and 

a nickel filter 0.02 to exclude the Kβ radiation. 

2.2.7. Differential Scanning Calorimetry 

Thermal characteristics of flours were determined using a differential scanning 

calorimeter (DSC-822e, Mettler Toledo, SAE). Flour samples were weighed into 

aluminum pans (40 L) and distilled water was added using a micropipette to make 

70% moisture content of the aqueous flour dispersions to avoid the effects of water 

scarcity on the thermal profile (non-equilibrium melting) of granular starch 

(Biliaderis et al. 1980; Biliaderis, 2009). Flour weights were about 8 mg. The 

samples were scanned from 0ºC to 110 ºC at 5 ºC/min using an empty pan as 

reference.  Starch retrogradation was evaluated in the samples which have been 

previously gelatinized in the DSC oven and stored in the pans at (4 ± 2) ºC for 7 

days; the staled samples were re-scanned using the same heating protocol as for 

gelatinization. The enthalpy (H) values, expressed in J/g, based on dry-flour basis, 

the onset and endset temperatures (To and Te) and the peak temperature (Tp) were 

established in both scans, of gelatinization and retrogradation. Samples were run in 

duplicate.  

2.2.8. Statistical Analysis 

Statgraphics Centurion v.6 (Bitstream, Cambridge, MN, USA) was used for 

multivariate non-linear regression. STATISTICA package (Tulsa, OK, EEUU) v.6, 

allowed performance of MANOVA analysis, and LSD (Least Significant Difference) 

test was used to evaluate significant differences (p<0.05) between samples.  

 



3. Results and discussion 

3.1. β-Glucanase Activity Rice Flours Treated by Microwaves 

Endogenous β-glucanase activity of rice flours was estimated by measuring the rate 

of decrease in specific viscosity of a purified BG solution after addition of the rice 

flour extract at constant temperature of 20 ± 0.2 °C (Table 1). A pronounced 

decrease in specific viscosity over time was observed with the untreated rice flours, 

corresponding to an average activity value of (0.109 ± 0.005) h-1, which denotes a 

high β-glucanase activity in untreated rice flour, only slightly smaller than that 

reported previously for barley flours, i.e. 0.143 or 0.117 for coarse or fine barley 

flours, respectively (Lazaridou et al. 2014). However, for the microwaves-treated 

flours the decline in specific viscosity of the mixed standard BG solution-flour 

extracts over time was significantly smaller (p<0.05), implying that the hydro-

microwave treatment brought about a large reduction in β-glucanase activity of the 

rice flours; the effect being more pronounced when the time of the treatment and the 

moisture content of flours increased (see Table 1).  

The total inactivation of β-glucanase activity was effected after 8 min and 4 min of 

MW treatment for flours tempered to moisture contents of 19% and 25%, 

respectively. For the same periods of MW treatment residual β-glucanase activities 

were still measured in flours with 13% and 16% moisture contents, even though they 

were reduced by 87% and 91% with respect to the initial flour enzymatic activity. 

Lazaridou et al. (2014) also found that increasing the moisture content of barley 

flours before hydrothermal treatment by autoclaving, resulted in complete 

inactivation of the endogenous barley β-glucan hydrolysing enzymes. This behavior 

could be explained by the large reduction of the denaturation temperature of proteins 

even with a slight increase of moisture content in low moisture protein systems 

(Arntfield et al.1990), such as hydrated flours. In other studies, hydrothermal 

treatments such as steaming and autoclaving of barley grain and oat groats also led to 

no detectable β-glucanase activity (Izydorczyk et al. 2000; Zhang et al. 1998). The 

water content is particularly important when the heating energy is generated by 

microwave radiation. Microwaves are electromagnetic waves in the frequency range 

of 300–300,000 MHz. In a MW field, where the polar molecules absorb microwave 

energy and orient themselves with respect to the applied electric field, the rapid 



change in their orientation generates heat by molecular friction (Sumnu 2001). This 

results in bulk heating throughout the sample and a faster heating rate compared with 

other forms of conventional heating. Because of its dipolar nature, water, is the main 

source of microwave interactions with food materials. Most likely the increase in 

moisture content of the flour above its monolayer value allows a faster absorption of 

energy from microwaves during the treatment. As a result, a pronounced reduction in 

the time needed to inactivate the β-glucanase with microwave energy in comparison 

to other heating systems is effected; i.e. the time is shortened from 4 h heating the 

flour in an oven at 130ºC (Rieder et al. 2015) to 20 min, when autoclaving flours at 

120 ºC (Lazaridou et al. 2014), to only 4 min with microwave heating. These 

findings  imply significant savings of time and energy. 

 

Table 1. Residual β‐glucanase activities of rice flours treated by microwave energy. 

 

a Calculated as decrease  in  specific viscosity per hour of a purified  β‐glucan  solution  (0.1%w/v)  following  the 
addition of rice flour extracts. 

b Values are means of duplicate treatments and duplicate measurements. Values with the same  letter  for the 
same parameter are not significantly different (p>0.05); means were compared using the LSD test.  

c Moisture content of flours after the microwave treatment. 

 

Initial moisture 

content 

(% fb) 

Treatment 

time 

(min) 

β‐glucanase

 Activity  a, b 

 

Final moisture 

content 

(% fb)c 

Control  0 0.109 h 13.00 

13  1  0.103 h  13.02  

13  2 0.068 fg 13.10 

13  4 0.034 d 12.57 

13  8 0.014 b 12.83

16  1  0.076 g  15.93 

16  2 0.052 ef 15.42

16  4 0.022 c 15.44

16  8 0.010  ab 15.10

19  1  0.044 de  18.61 

19  2 0.011 b 17.81

19  4 0.004 ab 18.15

19  8 0.000 a 17.66

25  0.67  0.012 b  24.44 

25  1 0.009 ab 24.20

25  2 0.005 ab 24.21

25  4 0.000 a 23.87



The evolution of temperature versus microwave treatment time is shown in Figure 1 

for flours with 13% to 25% moisture contents. In the first 20 s of treatment the flours 

had got 59ºC and 72ºC, respectively. After 2 ½ min and 2 min (for 13 and 25% 

moisture) both flours attained a constant temperature around 95ºC and 97ºC, 

respectively, leading to a plateau value as found by other authors (Lewandowicz et 

al. 1997). Lewandowicz et al. (1997) reported that the plateau interval length 

increased with the rise in moisture content and also when the sample was introduced 

in sealed containers instead of open ones; the sealed beakers used were covered by 

these authors with a perforated polyethylene foil that probably allowed some water 

loss during heat treatment. As can be concluded from the temperature-time 

responses, all the attained plateau temperature values were always below 100ºC 

(presumably due to the ‘colling effect’ from water evaporation), with water acting as 

‘protector’ of the flour constituents. This relatively low temperature probably 

explains the smaller changes in the physico-chemical properties of the heat-treated 

flours.  

 

 

Figure 1. Flour temperature evolution versus time upon microwave treatment of two 
rice flour samples at 13 and 25% water contents, respectively. 
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 3.2 β-Glucanase Inactivation Kinetics in Hydrated Rice Flours by Microwave 

Heating  

Figure 2 shows the regression surface response of the residual β-glucanase activity 

versus the microwave treatment time and the moisture content of the flour treated. 

The regression equation obtained was: 

     (eq. 1)  

with  being dependent on moisture content (M) as follows: 

     (eq. 2) 

leading to the general equation: 

exp t exp   (eq. 3) 

Where A is the time dependent β-glucanase activity (t); t is the time of microwave 

treatment (min) and M is the moisture content of the hydrated flour (% in wet basis), 

k (min-1) is the apparent rate constant of enzyme inactivation that is dependent 

exponentially on moisture flour. A0, ko and b are constants estimated for this specific 

system after fitting the 33 data sets to the model (equation 3). The estimated value of 

Ao constant was (0.109 ± 0.0027) h-1, representing the initial β-glucanase activity of 

the untreated flour (t = 0); ko (0.0146 ± 0.0033) min-1 represents the rate of enzyme 

inactivation when the moisture content of the flour is 0%; and b (0.212 ±0.013) is a 

constant that quantifies the influence of water content of the flour to the inactivation 

rate. The correlation coefficient of this regression, R2, was 0.9667 which means that 

the model explains successfully the variation of β-glucanase activity during the 

microwave treatment within the range of moistures (13-25%) and treatment times 

(0.67 – 8 min) applied in the present study. The standard error of the estimate was 

0.0070 h-1. The fitting value (estimated) of Ao, was very near to the experimental 

initial β-glucanase activity of the flour, before any treatment, 0.109 h-1 (see Table 1), 

implying the good agreement of the model to the experimental data. Regarding the 

correlation equation (eq. 3) it must be noted the marked effect of flour moisture, M, 

on β-glucanase inactivation kinetics, as the rate constant, k, depends exponentially on 

it. The kinetics constant, k, for the completely dry flour, 0.0146 min-1, increased to 

0.231, 0.438, 0.828 and 2.969 min-1 when the moisture content of the microwave-



treated flour increased to 13, 16, 19 and 25%, respectively. The model can also 

predict the time of MW treatment needed to completely inactivate the endogenous β-

glucanase (to reduce its original activity value in rice flour from 0.1 h-1 to 0.0001 h-

1); this is reduced from more than 30 min at 13% hydration level to less than 3 min 

for 25% moisture.  

 

Figure 2: Kinetics of β-glucanase inactivation by microwave treatment depending on flour 
moisture content. 

 

3.3. Pasting Properties of Flours 

The impact of microwave treatments on rheological responses of aqueous flour 

dispersions, i.e. upon cooking (gelatinization and pasting ) and cooling (gelling) of 

the starch component of the rice flours, was studied to evaluate any side effects that 

microwave β-glucanase inactivation treatment might have on the flours. As can be 

seen in Table 2, although some significant differences were found between the 

pasting properties of the native rice flour and those of the microwave treated 

samples, particularly for the highest moisture flours and the longest treatment times, 

none of them were of great quantitative importance. In general, microwave treated 

flours did not show significant differences in peak viscosity compared to the control 

(untreated) flour. However, the microwave treatment increased trough viscosity (TV) 



when the two longest treatment times were applied in all the flours, independently of 

the moisture content. The most important increase in TV, 14%, was noted for the 

flour with the highest moisture content, 25%, and the longest treatment time, 4 min. 

This increase in TV, concomitant with the decrease in the Breakdown, demonstrates 

that microwave treated flours are more stable during continuous heating and 

agitation, which concurs with the findings of Adebowale et al. (2005), Hormdok and 

Noomhorm (2007), Olayinka et al. (2008) and Watcharatewinkul et al. (2009). The 

final viscosity (FV) of the gelled flours after the heating/cooling cycle, hardly varied 

in any of the MW treated flours with respect to the untreated flour; only flours with 

25% moisture, following a 2 - 4 min MW treatment, showed a significant, although 

moderate (<10%) increase in FV. The setback viscosity (SB) was neither affected by 

MW treatment, as also happened with the pasting temperature (PT). Only the flour 

with 25% moisture and treated for 4 min showed a feeble significant increase in the 

PT. 

Table 2. Effects of microwaves treatment on the viscometric parameters of rice flours.  

Moisture 

content  

(%fb) 

Treatment 

time  

(min) 

Peak 

Viscosity 

(mPa∙s) 

Trough

Viscosity  

(mPa∙s) 

Breakdown

Viscosity 

(mPa∙s) 

Final 

viscosity 

(mPa∙s) 

Setback 

Viscosity 

(mPa∙s) 

Pasting 

Temperature 

(ºC) 

Control   0  2352  ab  1467 ab  885 fg  3336 abc  1869  ab  78.5  a 

13  1  2414  abc  1488 abc  926 gh  3338 abc  1850  ab  78.6  a 

13  2  2422  abc  1504 abcd 918 gh 3353 abc 1850  ab  78.6  a 

13  4  2357  abc  1577 ef 780 cde 3392 abcd 1852  ab  79.6  ab

13  8  2419  abc  1538 cde  881 efg  3404 abcd  1866  ab  80.0  ab 

16  1  2363  abc  1446 a  917 gh  3315 abc  1869  ab  78.6  a 

16  2  2365  abc  1465 ab 900 fgh 3335 abc 1870  ab  78.9  a 

16  4  2450  bc  1564 cde 887 cde 3493 bcde 1900  ab  79.9  ab

16  8  2344  abc  1561 cde  783 c  3438 abcd  1877  ab  80.2  ab 

19  1  2375  abc  1451 a  924 gh  3340 abc  1888  ab  79.7  ab 

19  2  2277  a  1452 a 825 cd 3262 a 1810  a  79.8  ab

19  4  2341  abc  1611 fg 730 b 3477 bcde 1866  ab  79.7  ab

19  8  2285  a  1617 fgh  668 a  3417 abcd  1800  a  79.2  ab 

25  0.67  2396  abc  1563 cde  833 def  3333 abc  1766  a  79.6  ab 

25  1  2437  bc  1585 ef 852 de 3463 bcd 1878  ab  79.7  ab

25  2  2456  c  1647 gh 809 cd 3635 e 1989  b  79.8  ab

25  4  2439  bc  1675 h  764 bc  3551 de  1875  ab  81.0  b 

Within the data set of each parameter, different letters in the mean values of therespective 
columns imply significant differences between means at p < 0.05. 



Some studies have been conducted on the effect of MW on cereals, mainly starches. 

Lewandowicz et al. (2000) found an increase in gelatinization temperature and a 

decrease in solubility of microwaved maize and wheat starches. Stevenson et al. 

(2005) also reported an increase of gelatinization temperature and a decrease of paste 

viscosity of microwaved maize starch. Anderson and Guraya (2006) and Luo et al. 

(2006) investigated, respectively, the effect of microwave on rice and maize starches 

with different proportions of amylose/amylopectin. These authors reported 

rearrangements of the molecular structure upon microwave heating that could 

explain the significant changes in viscosity properties of both waxy and non-waxy 

starches. Pinkrová et al. (2003) have observed that the peak viscosity of rice flour 

decreased as temperature and microwave power level applied to rice grain increased. 

On the other hand, Fan et al. (2012) reported that microwave irradiation had no effect 

on the optical and thermal properties of rice starch during gelatinization compared to 

conventional heating. Many studies have been carried out on the structural and 

physical properties of starches after heat-moisture (HMT) treatment (Zavareze and 

Dias 2011). HMT promotes intense changes in starches, thus significantly altering 

their pasting profile as evidenced by increased pasting temperature and decreased 

peak viscosity, final viscosity, and breakdown (Watcharatewinkul et al. 2009). 

According to these researchers, the changes in heat-treated starch’s pasting properties 

are due to associations between the chains in the amorphous regions of the granule as 

well to changes in crystallinity during the hydrothermal treatment. Such structural 

modifications are intensified as the moisture content in the HMT increases (Olayinka 

et al. 2008). As the forces of the intra-granular chain interactions are strengthened, 

the starch requires more heat for structural disintegration and paste formation 

(Olayinka et al. 2008). A high pasting temperature thus indicates that more forces 

and cross-links exist within the starch granules (Olayinka et al. 2008). Lan et al. 

(2008) have shown that the retrogradation process is influenced by the amount of 

leached amylose, granule size, and the presence of rigid, non-fragmented swollen 

granules. Chung et al. (2009) also found that HMT reduces amylose leaching from 

starch granules and that this reduction is more significant in starches containing high 

levels of amylose. They have reported that HMT promotes additional amylose–

amylose and/or amylopectin–amylopectin chain interactions, which restrict amylose 

leaching and decrease retrogradation events. A recent study by Roman et al. (2015) 

reports on the effects of short time (0.5 to 4 min) MW treatments of corn flours at 



30% moisture. They found opposite effects on pasting properties depending on the 

MW treatment time. Treated samples showed increased viscosity during the heating-

cooling cycle when a very short time of microwave treatment was applied (0.5 and 1 

min). Instead, longer treatments (4 min) induced the opposite effect, and a decrease 

in the viscosity was noted. A decrease of the maximum (peak) viscosity was also 

observed by Pinkrová et al. (2003) by increasing temperature of microwave 

treatment of the rice grain and increasing power output at a moisture content of 30 

%. Roman et al. (2015) have examined the effect of MW on flour structure. They 

found a more disaggregated structure and a less compact matrix, with starch granules 

being more naked and slightly swollen. Luo et al. (2006) observed even more marked 

changes on starch granule structure when moistened (30 %) maize starch was treated 

for 20 min with microwaves at 1 W/g. They have noted some breakage, cracks and 

pores on the surface of the starch granules. These observations can be attributed to 

chain segmental transfers and internal rearrangements in the granular material, 

facilitated by water plasticization. The absence of such effects in our MW treated 

flours could be due to the shorter treatment times employed (lower power) as well as 

the use of completely airtight bags, where large water transfers within the sample 

were probably hindered by the vapor pressure raised in the bag headspace. Figure 3 

shows the different pasting properties of two aliquots of 30% moistened-rice flour 

treated with the same MW heating procedure used in all the experiments carried out 

in this study, and in an opened beaker. Although further studies should be carried out 

to fully unravel the different effects heat-moisture treatments have on the starch 

granular material using MW, the notable differences in pasting properties shown in 

Fig. 3 clearly indicate that water plays an important role in starch modifications 

during MW treatments. Moreover, it is important to note that the flour treated in the 

close bag maintained its original white color compared to that treated in the open 

beaker for the same time which showed a visible darker-brown color. 

 



 

Figure 3: Pasting characteristics of (9.2 g dry flour/ 100 g) aqueous dispersions of rice flours; 

control and microwave heat‐treated at 30% moisture content for 4 min. Viscosity profile for 

native (       ), and microwave‐treated samples in hermetic bags (       ) and open beaker  (    ).  

 

3.4.  X-ray Diffraction 

The diffractograms obtained from the microwave-treated and the untreated 25% 

moistened-rice flours (Fig. 4) showed that all samples maintained the A-type 

crystallinity, typical of many cereal starches (Imberty, et al. 1991; Zobel 1964) with 

peaks centered at approximately 15, 17.1, 18  and 23 (2), for both native sample 

and all microwave treated rice flours. Indeed, the A-type crystalline pattern was 

conserved in the MW treated flours with 25%, for any processing time (0.67, 1, 2 and 

4 min), and no significant differences in the relative crystallinity value compared to 

the native flour (starch) were observed. Luo et al. (2006) and Roman et al. (2015) 

reported an increase in X-ray intensities for microwave treated maize starch and 

flour, respectively. It has been postulated that microwave radiation can lead to 

formation of additional double helical structures within the starch crystallites, leading 

to a higher molecular order than that in native starch (Luo et al. 2006). The 

movement of double helices might be related to the vaporization of water molecules 

that release positions originally occupied by water molecules, allowing for more 
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compact ordered crystalline arrays (Luo et al. 2006).  The use of hermetically sealed 

bags in our study provided a small positive pressure inside the bags and prevented 

the loss of water, and this in turn might have resulted in limited molecular 

reorganization within the starch granules. Different effects of HMT on starch 

crystallinity have been noted by other authors, however, for more prolonged thermal 

teatments. Jyothi et al. (2010) observed an increase in crystallinity of sweet potato 

and arrowroot starches and a slight decrease in the crystallinity of cassava starch, 

after the three starches were heat-moisture treated at 120ºC for 14 h at 20% moisture.  

Similar results to our findings were obtained by Maache-Rezzoug et al. (2008). 

These authors did not find any significant difference in the relative crystallinity when 

applied a controlled pressure drop (DIC) hydrothermal treatment at 1 bar of pressure 

(100 ºC, 14-15% moisture) for any processing time (10 – 60 min) to maize starch, 

whereas they have noted a significant reduction in relative crystallinity when applied 

treatments at 2 and 3 bar of pressure (122 and 135ºC, respectively); in the latter case, 

the A-type crystalline pattern was progressively changing to a V-type crystalline 

pattern, implying the formation of amylose-lipid complexes in the heat-treated starch 

granules. Overall, the findings of the present work clearly indicate that it is possible 

to apply MW treatments for complete inactivation of β-glucanase without modifying 

starch structure, even at the highest moisture content of 25%. Maintaining a constant 

water content of the flour and the flour temperature below 100 °C, throughout the 

microwave treatment are probably the most important parameters in this respect. 

 
Figure 4: X-ray diffraction patterns of untreated rice flour (control) and microwaved 
(different treatment times) rice flours at moisture content 25%. .  
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3.5. Impact of MW on Thermal Properties 

The results of X-ray diffractometry were further confirmed by differential scanning 

calorimetry. The thermal properties of untreated (control) and  microwave-treated 

25% moistened-rice flours are summarized in Table 3. In the range of temperatures 

tested, the aqueous dispersions of flours exhibited two endothermic peaks, 

corresponding to the gelatinization of starch and the dissociation of amylose-lipid 

complexes (Biliaderis 2009). After seven-day storage (in the DSC pans) at 4ºC of the 

gelatinized samples a second scan also showed two endothermic transitions. The 

peak corresponding to the melting of the recrystallized amylopectin that appeared at 

lower temperatures than the gelatinization peak of native starch, and the amylose-

lipid complex transition found in the first scan that appeared at the same temperature 

and had the same enthalpy value. As can be seen, the effect of microwaves on starch 

gelatinization, amylopectin retrogradation and amylose-lipid complex temperatures 

and enthalpies was practically negligible, even though the samples tested by DSC 

were those of the highly moistened-flours. The only significant effect (p<0.01) was 

obtained in the gelatinization peak temperature (weak annealing, Biliaderis 2009), 

although the quantitative importance of this change was rather minor. Other authors 

have also reported an increase in the gelatinization peak temperatures of microwave 

treated 30% moistened-maize flours (Roman et al. 2015) when MW energy was 

applied for 2, 4 min;  the increases observed by these authors were 3°C, while that 

of the present work was less than 1°C. Lewandowicz et al. (2000) also observed rises 

in the gelatinization peak temperatures of 30% moistened-starches treated by MW 

for 60 min at 0.5 W/g, that varied from 13ºC for wheat to 6ºC for waxy corn starch, 

in comparison to their untreated counterparts. Moreover, these authors have reported 

an important decrease, ~72%, in the apparent gelatinization enthalpy value of wheat 

starch that was only ~ 50% for corn, and insignificant for waxy corn compared with 

the untreated starches. Other authors also found a reduction in starch gelatinization 

enthalpy for MW treated corn starches (Luo et al. 2006; Stevenson et al. 2005). In 

contrast, Roman et al. (2015) have reported an almost double gelatinization enthalpy 

of all MW-treated corn flour samples with respect to the native one. Consequently, 

the extent of MW heating effects on thermal behavior of granular starches depends 

on the starch source, the amylose and  moisture content, as well as the intensity and 

time of the applied microwave treatment (Zavareze and Dias 2011).  



 

Table 3. Thermal properties of aqueous dispersions (70 % water) of flour treated by microwaves (at 25% water content). 
 
 

Treatment 
time 
(min) 

Hgel
 

(J/g db)

To-gel 
 

(ºC) 

Tp-gel 
 

(ºC) 

Te-gel 
 

(ºC) 

R 
 

(ºC) 

Ham-lip
 

(J/g db) 

Tp-am-

lip 
 

(º C)

Hret 
 

(J/g db) 

Tp-ret 
 

(ºC) 

0 7.7 a 68.0 a 74.16 a 89.6 a 12.4 a 1.22 bc 100.7 a 4.7 bc 52.7 a 

0.67 7.5 a 68.3 ab 74.30 b 90.2 a 12.0 a 1.09 ab 100.0 a 4.2 a 54.5 ab 

1 8.0 a 68.1 a 74.25 ab 91.2 a 12.2 a 1.32 c 100.2 a 4.4 ab 55.2 b 

2 7.7 a 68.4 ab 74.47 c 91.5 a 12.2 a 1.06 ab 101.3 a 4.7 bc 53.3 ab 

4 7.9 a 68.9 b 74.71 d 91.5 a 11.6 a 0.97 a 101.7 a 4.8 c 52.8 a 

 

Hgel: Enthalpy value associated with gelatinization; To-gel and Te-gel: onset and endset temperatures of the gelatinization peak; Tp-gel, Tp-ret, Tp-amil: 
Tpeak of gelatinization, retrogradation and amylose-lipid complex dissociation peaks, respectively; R= 2·(Tp-To) ; Hamyl-lipid: Enthalpy value of 
the dissociation of the amylose-lipid complex; Hret: Melting enthalpy of the recrystalized amylopectin after storage of the gelatinized sample at 
4ºC for 7 days.  Each value is the average of duplicate measurements.  
 
Within the data set of each parameter, different letters in the mean values of the respective  columns imply significant differences between means 

at p < 0.05. 

 



4. Conclusions 

Microwave treatment is a useful alternative for inactivation of the endogenous β-

glucanase in rice flours when applied to moistened flour samples. The enzyme 

inactivation process follows a first order kinetic response (R2 = 0.97). The constant rate 

of the thermal inactivation by MW increased exponentially with the moisture content of 

the flour, so that, the microwave treatment time required for complete β-glucanase 

inactivation was only 4 min when the initial flour moisture wasraised to 25%. 

Following the MW treatment, the crystallinity of the starch was unaffected and the side 

effects of the treatment on flour pasting and thermal properties were rather negligible.  
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