26 research outputs found

    Very Small (3-6 Atoms) Gold Cluster Catalyzed Carbón-Carbon and Carbon-Heteroatom Bond-Forming Reactions in Solution

    Full text link
    Small gold clusters containing 3-6 atoms (submolar) catalyze different carbon-carbon and carbon-heteroatom bond-forming reactions. They can be formed in situ from gold salts, complexes and nanoparticles under acidic conditions. A sound determination of possible clusters in solution for previously reported reactions can only be assessed after accurate kinetic studies, in situ and ex situ spectroscopic measurements, and comparison with preformed gold clusters, as the stability of gold salts and complexes can vary depending on the type of catalyst and the experimental conditions. The results here reported could be expanded not only to other gold-catalyzed reactions but also to other catalytic metal systems.Financial support by the Severo Ochoa program and Consolider-Ingenio 2010 (proyecto MULTICAT) from Ministerio de Ciencia e Innovacion (MCIINN) is acknowledged. J. O.-M. thanks Instituto de Tecnologia Quimica (ITQ) for a postgraduate scholarship. A. L.-P. thanks Consejo Superior de Investigaciones Cientificas (CSIC) for a contract.Oliver Meseguer, J.; Leyva Perez, A.; Corma Canós, A. (2013). Very Small (3-6 Atoms) Gold Cluster Catalyzed Carbón-Carbon and Carbon-Heteroatom Bond-Forming Reactions in Solution. ChemCatChem. 5(12):3509-3515. doi:10.1002/cctc.201300695S35093515512Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold-Katalyse. Angewandte Chemie, 118(47), 8064-8105. doi:10.1002/ange.200602454Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436xGorin, D. J., & Toste, F. D. (2007). Relativistic effects in homogeneous gold catalysis. Nature, 446(7134), 395-403. doi:10.1038/nature05592Gorin, D. J., Sherry, B. D., & Toste, F. D. (2008). Ligand Effects in Homogeneous Au Catalysis. Chemical Reviews, 108(8), 3351-3378. doi:10.1021/cr068430gNolan, S. P. (2010). The Development and Catalytic Uses of N-Heterocyclic Carbene Gold Complexes. Accounts of Chemical Research, 44(2), 91-100. doi:10.1021/ar1000764Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414uLeyva-Pérez, A., & Corma, A. (2011). Ähnlichkeiten und Unterschiede innerhalb der «relativistischen» Triade Gold, Platin und Quecksilber in der Katalyse. Angewandte Chemie, 124(3), 636-658. doi:10.1002/ange.201101726Leyva-Pérez, A., & Corma, A. (2011). Similarities and Differences between the «Relativistic» Triad Gold, Platinum, and Mercury in Catalysis. Angewandte Chemie International Edition, 51(3), 614-635. doi:10.1002/anie.201101726Seidel, G., Lehmann, C. W., & Fürstner, A. (2010). Elementary Steps in Gold Catalysis: The Significance of gem-Diauration. Angewandte Chemie, 122(45), 8644-8648. doi:10.1002/ange.201003349Seidel, G., Lehmann, C. W., & Fürstner, A. (2010). Elementary Steps in Gold Catalysis: The Significance of gem-Diauration. Angewandte Chemie International Edition, 49(45), 8466-8470. doi:10.1002/anie.201003349Hashmi, A. S. K. (2010). Homogene Gold-Katalyse jenseits von Vermutungen und Annahmen - charakterisierte Intermediate. Angewandte Chemie, 122(31), 5360-5369. doi:10.1002/ange.200907078Hashmi, A. S. K. (2010). Homogeneous Gold Catalysis Beyond Assumptions and Proposals-Characterized Intermediates. Angewandte Chemie International Edition, 49(31), 5232-5241. doi:10.1002/anie.200907078Gómez-Suárez, A., & Nolan, S. P. (2012). Katalyse mit zweikernigen Goldkomplexen: Sind zwei Goldzentren besser als eines? Angewandte Chemie, 124(33), 8278-8281. doi:10.1002/ange.201203587Gómez-Suárez, A., & Nolan, S. P. (2012). Dinuclear Gold Catalysis: Are Two Gold Centers Better than One? Angewandte Chemie International Edition, 51(33), 8156-8159. doi:10.1002/anie.201203587Hashmi, A. S. K., Braun, I., Rudolph, M., & Rominger, F. (2012). The Role of Gold Acetylides as a Selectivity Trigger and the Importance of gem-Diaurated Species in the Gold-Catalyzed Hydroarylating-Aromatization of Arene-Diynes. Organometallics, 31(2), 644-661. doi:10.1021/om200946mHashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Eine einfache Gold-katalysierte Synthese von Benzofulvenen -gem-diaurierte Spezies als «Instant-Dual-Activation»-Präkatalysatoren. Angewandte Chemie, 124(18), 4532-4536. doi:10.1002/ange.201109183Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Simple Gold-Catalyzed Synthesis of Benzofulvenes-gem-Diaurated Species as «Instant Dual-Activation» Precatalysts. Angewandte Chemie International Edition, 51(18), 4456-4460. doi:10.1002/anie.201109183Grirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401Corma, A. (2006). Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science, 313(5785), 332-334. doi:10.1126/science.1128383Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813Blanco Jaimes, M. C., Böhling, C. R. N., Serrano-Becerra, J. M., & Hashmi, A. S. K. (2013). Hochaktive einkernige NAC-Gold(I)-Katalysatoren. Angewandte Chemie, 125(31), 8121-8124. doi:10.1002/ange.201210351Blanco Jaimes, M. C., Böhling, C. R. N., Serrano-Becerra, J. M., & Hashmi, A. S. K. (2013). Highly Active Mononuclear NAC-Gold(I) Catalysts. Angewandte Chemie International Edition, 52(31), 7963-7966. doi:10.1002/anie.201210351Hashmi, A. S. K., Frost, T. M., & Bats, J. W. (2000). Highly Selective Gold-Catalyzed Arene Synthesis. Journal of the American Chemical Society, 122(46), 11553-11554. doi:10.1021/ja005570dHashmi, A. S. K., Frost, T. M., & Bats, J. W. (2001). Gold Catalysis:  On the Phenol Synthesis. Organic Letters, 3(23), 3769-3771. doi:10.1021/ol016734dLeyva-Pérez, A., Rubio-Marqués, P., Al-Deyab, S. S., Al-Resayes, S. I., & Corma, A. (2011). Cationic Gold Catalyzes ω-Bromination of Terminal Alkynes and Subsequent Hydroaddition Reactions. ACS Catalysis, 1(6), 601-606. doi:10.1021/cs200168pKennedy-Smith, J. J., Staben, S. T., & Toste, F. D. (2004). Gold(I)-Catalyzed Conia-Ene Reaction of β-Ketoesters with Alkynes. Journal of the American Chemical Society, 126(14), 4526-4527. doi:10.1021/ja049487sMarion, N., Ramón, R. S., & Nolan, S. P. (2009). [(NHC)AuI]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. Journal of the American Chemical Society, 131(2), 448-449. doi:10.1021/ja809403eHerzing, A. A., Kiely, C. J., Carley, A. F., Landon, P., & Hutchings, G. J. (2008). Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 321(5894), 1331-1335. doi:10.1126/science.1159639CHRETIEN, S., BURATTO, S., & METIU, H. (2007). Catalysis by very small Au clusters. Current Opinion in Solid State and Materials Science, 11(5-6), 62-75. doi:10.1016/j.cossms.2008.07.003Tsunoyama, H., & Tsukuda, T. (2009). Magic Numbers of Gold Clusters Stabilized by PVP. Journal of the American Chemical Society, 131(51), 18216-18217. doi:10.1021/ja908188fAlves, L., Ballesteros, B., Boronat, M., Cabrero-Antonino, J. R., Concepción, P., Corma, A., … Mendoza, E. (2011). Synthesis and Stabilization of Subnanometric Gold Oxide Nanoparticles on Multiwalled Carbon Nanotubes and Their Catalytic Activity. Journal of the American Chemical Society, 133(26), 10251-10261. doi:10.1021/ja202862kLu, J., Aydin, C., Browning, N. D., & Gates, B. C. (2012). Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY. Angewandte Chemie, 124(24), 5944-5948. doi:10.1002/ange.201107391Lu, J., Aydin, C., Browning, N. D., & Gates, B. C. (2012). Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY. Angewandte Chemie International Edition, 51(24), 5842-5846. doi:10.1002/anie.201107391Bi, Q.-Y., Du, X.-L., Liu, Y.-M., Cao, Y., He, H.-Y., & Fan, K.-N. (2012). Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions. Journal of the American Chemical Society, 134(21), 8926-8933. doi:10.1021/ja301696eShichibu, Y., & Konishi, K. (2010). HCl-Induced Nuclearity Convergence in Diphosphine-Protected Ultrasmall Gold Clusters: A Novel Synthetic Route to «Magic-Number» Au13 Clusters. Small, 6(11), 1216-1220. doi:10.1002/smll.200902398Carrettin, S., Blanco, M. C., Corma, A., & Hashmi, A. S. K. (2006). Heterogeneous Gold-Catalysed Synthesis of Phenols. Advanced Synthesis & Catalysis, 348(10-11), 1283-1288. doi:10.1002/adsc.200606099Hashmi, A. S. K., Hengst, T., Lothschütz, C., & Rominger, F. (2010). New and Easily Accessible Nitrogen Acyclic Gold(I) Carbenes: Structure and Application in the Gold-Catalyzed Phenol Synthesis as well as the Hydration of Alkynes. Advanced Synthesis & Catalysis, 352(8), 1315-1337. doi:10.1002/adsc.201000126Hashmi, A. S. K., Ghanbari, M., Rudolph, M., & Rominger, F. (2012). Combining Gold and Palladium Catalysis: One-Pot Access to Pentasubstituted Arenes from Furan-Yne and En-Diyne Substrates. Chemistry - A European Journal, 18(26), 8113-8119. doi:10.1002/chem.201200091Hashmi, A. S. K., Loos, A., Doherty, S., Knight, J. G., Robson, K. J., & Rominger, F. (2011). Gold-Catalyzed Cyclizations: A Comparative Study of ortho,ortho′-Substituted KITPHOS Monophosphines with their Biaryl Monophosphine Counterpart SPHOS. Advanced Synthesis & Catalysis, 353(5), 749-759. doi:10.1002/adsc.201000879Stratakis, M., & Garcia, H. (2012). Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 112(8), 4469-4506. doi:10.1021/cr3000785Jeyabharathi, C., Senthil Kumar, S., Kiruthika, G. V. M., & Phani, K. L. N. (2010). Aqueous CTAB-Assisted Electrodeposition of Gold Atomic Clusters and Their Oxygen Reduction Electrocatalytic Activity in Acid Solutions. Angewandte Chemie, 122(16), 2987-2990. doi:10.1002/ange.200905614Jeyabharathi, C., Senthil Kumar, S., Kiruthika, G. V. M., & Phani, K. L. N. (2010). Aqueous CTAB-Assisted Electrodeposition of Gold Atomic Clusters and Their Oxygen Reduction Electrocatalytic Activity in Acid Solutions. Angewandte Chemie International Edition, 49(16), 2925-2928. doi:10.1002/anie.200905614Walter, M., Akola, J., Lopez-Acevedo, O., Jadzinsky, P. D., Calero, G., Ackerson, C. J., … Hakkinen, H. (2008). A unified view of ligand-protected gold clusters as superatom complexes. Proceedings of the National Academy of Sciences, 105(27), 9157-9162. doi:10.1073/pnas.0801001105Sakurai, H., Kamiya, I., & Kitahara, H. (2010). Formal Lewis acidic character of gold nanocluster catalyst. Pure and Applied Chemistry, 82(11), 2005-2016. doi:10.1351/pac-con-09-12-06Boronat, M., & Corma, A. (2011). Molecular approaches to catalysis. Journal of Catalysis, 284(2), 138-147. doi:10.1016/j.jcat.2011.09.010Rodríguez-Vázquez, M. J., Vázquez-Vázquez, C., Rivas, J., & López-Quintela, M. A. (2009). Synthesis and characterization of gold atomic clusters by the two-phase method. The European Physical Journal D, 52(1-3), 23-26. doi:10.1140/epjd/e2009-00061-5Wang, D., Cai, R., Sharma, S., Jirak, J., Thummanapelli, S. K., Akhmedov, N. G., … Shi, X. (2012). «Silver Effect» in Gold(I) Catalysis: An Overlooked Important Factor. Journal of the American Chemical Society, 134(21), 9012-9019. doi:10.1021/ja303862zGómez-Suárez, A., Oonishi, Y., Meiries, S., & Nolan, S. P. (2013). [{Au(NHC)}2(μ-OH)][BF4]: Silver-Free and Acid-Free Catalysts for Water-Inclusive Gold-Mediated Organic Transformations. Organometallics, 32(4), 1106-1111. doi:10.1021/om301249rWeber, S. G., Rominger, F., & Straub, B. F. (2012). Isolated Silver Intermediate of Gold Precatalyst Activation. European Journal of Inorganic Chemistry, 2012(17), 2863-2867. doi:10.1002/ejic.201200327Hashmi, A. S. K. (2012). Sub-Nanosized Gold Catalysts. Science, 338(6113), 1434-1434. doi:10.1126/science.1231901Albrecht, M. (2009). Carbenes in Action. Science, 326(5952), 532-533. doi:10.1126/science.1181553Lalrempuia, R., McDaniel, N. D., Müller-Bunz, H., Bernhard, S., & Albrecht, M. (2010). Katalytische Oxidation von Wasser durch einen Iridiumkomplex mit einem starken Carben-Donorliganden. Angewandte Chemie, 122(50), 9959-9962. doi:10.1002/ange.201005260Lalrempuia, R., McDaniel, N. D., Müller-Bunz, H., Bernhard, S., & Albrecht, M. (2010). Water Oxidation Catalyzed by Strong Carbene-Type Donor-Ligand Complexes of Iridium. Angewandte Chemie International Edition, 49(50), 9765-9768. doi:10.1002/anie.201005260Lavallo, V., & Grubbs, R. H. (2009). Carbenes As Catalysts for Transformations of Organometallic Iron Complexes. Science, 326(5952), 559-562. doi:10.1126/science.117891
    corecore