163 research outputs found

    Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes.

    Full text link
    Background: vitreomacular adhesion can lead to pathologic traction and macular hole. The standard treatment for severe, symptomatic vitreomacular adhesion is vitrectomy. Ocriplasmin is a recombinant protease with activity against fibronectin and laminin, components of the vitreoretinal interface. Methods: we conducted two multicenter, randomized, double-blind, phase 3 clinical trials to compare a single intravitreal injection of ocriplasmin (125 ÎĽg) with a placebo injection in patients with symptomatic vitreomacular adhesion. The primary end point was resolution of vitreomacular adhesion at day 28. Secondary end points were total posterior vitreous detachment and nonsurgical closure of a macular hole at 28 days, avoidance of vitrectomy, and change in best-corrected visual acuity. Results: overall, 652 eyes were treated: 464 with ocriplasmin and 188 with placebo. Vitreomacular adhesion resolved in 26.5% of ocriplasmin-injected eyes and in 10.1% of placebo-injected eyes (P<0.001). Total posterior vitreous detachment was more prevalent among the eyes treated with ocriplasmin than among those injected with placebo (13.4% vs. 3.7%, P<0.001). Nonsurgical closure of macular holes was achieved in 40.6% of ocriplasmin-injected eyes, as compared with 10.6% of placebo-injected eyes (P<0.001). The best-corrected visual acuity was more likely to improve by a gain of at least three lines on the eye chart with ocriplasmin than with placebo. Ocular adverse events (e.g., vitreous floaters, photopsia, or injection-related eye pain--all self-reported--or conjunctival hemorrhage) occurred in 68.4% of ocriplasmin-injected eyes and in 53.5% of placebo-injected eyes (P<0.001), and the incidence of serious ocular adverse events was similar in the two groups (P=0.26). Conclusions: intravitreal injection of the vitreolytic agent ocriplasmin resolved vitreomacular traction and closed macular holes in significantly more patients than did injection of placebo and was associated with a higher incidence of ocular adverse events, which were mainly transient. (Funded by ThromboGenics; ClinicalTrials.gov numbers, NCT00781859 and NCT00798317.)

    The genome sequence of <i>Trypanosoma brucei gambiense</i>, causative agent of chronic Human African Trypanosomiasis

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; &lt;i&gt;Trypanosoma brucei gambiense&lt;/i&gt; is the causative agent of chronic Human African Trypanosomiasis or sleeping sickness, a disease endemic across often poor and rural areas of Western and Central Africa. We have previously published the genome sequence of a &lt;i&gt;T. b. brucei&lt;/i&gt; isolate, and have now employed a comparative genomics approach to understand the scale of genomic variation between &lt;i&gt;T. b. gambiense&lt;/i&gt; and the reference genome. We sought to identify features that were uniquely associated with &lt;i&gt;T. b. gambiense&lt;/i&gt; and its ability to infect humans.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods and findings:&lt;/b&gt; An improved high-quality draft genome sequence for the group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972 isolate was produced using a whole-genome shotgun strategy. Comparison with &lt;i&gt;T. b. brucei&lt;/i&gt; showed that sequence identity averages 99.2% in coding regions, and gene order is largely collinear. However, variation associated with segmental duplications and tandem gene arrays suggests some reduction of functional repertoire in &lt;i&gt;T. b. gambiense&lt;/i&gt; DAL 972. A comparison of the variant surface glycoproteins (VSG) in &lt;i&gt;T. b. brucei&lt;/i&gt; with all &lt;i&gt;T. b. gambiense&lt;/i&gt; sequence reads showed that the essential structural repertoire of VSG domains is conserved across &lt;i&gt;T. brucei&lt;/i&gt;.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; This study provides the first estimate of intraspecific genomic variation within &lt;i&gt;T. brucei&lt;/i&gt;, and so has important consequences for future population genomics studies. We have shown that the &lt;i&gt;T. b. gambiense&lt;/i&gt; genome corresponds closely with the reference, which should therefore be an effective scaffold for any &lt;i&gt;T. brucei&lt;/i&gt; genome sequence data. As VSG repertoire is also well conserved, it may be feasible to describe the total diversity of variant antigens. While we describe several as yet uncharacterized gene families with predicted cell surface roles that were expanded in number in &lt;i&gt;T. b. brucei&lt;/i&gt;, no &lt;i&gt;T. b. gambiense&lt;/i&gt;-specific gene was identified outside of the subtelomeres that could explain the ability to infect humans.&lt;/p&gt

    Collapse of a molecular cloud core to stellar densities: stellar core and outflow formation in radiation magnetohydrodynamics simulations (dataset)

    Get PDF
    This repository contains the datasets from the original smoothed particle hydrodynamics (SPH) calculations for the associated paper, including most dump files. It also includes all of the scripts for generating the figures that appear in the paper. These are contained either in the Figure_Generation.zip file or in the Paper.zip file. The former mainly contains SPLASH scripts (see below) for generating images from the SPH dump files. The latter mainly contains the final (or intermediate) SPLASH figures, plus the data files and scripts for making the other figures (line plots). Line plots use supermongo scripts. There are 5 main SPH calculations discussed in the paper, using 3 million SPH particles (3M) and with magnetic mass-to-flux ratios of 5, 10, 20, 100, and infinity (e.g. MF05). The outputs from each calculation are found in the zip files that begin with RMHD_MF*. For example, RMHD_MF05_3M.zip contains all the output (and executable) from the 3 million particle calculation with mass-to-flux ratio 5, except the dump files. The dump files are contained in a series of zip files such as: RMHD_MF05_3M_0200_0219.zip which contains 20 dump files, numbers 200 to 219. The dump files are included in groups to allow downloads in reasonably small (~20 GB) chunks, since the entire repository is ~3 TB. Also included is the output from the 1 million particle, mass-to-flux ratio 5 calculation (which was used for resolution testing in the Appendix of the paper). Only the single dump file from the 10 million particle calculation which was used to generate figure 22 is included in the respository (within the Figure_Generation.zip file) because the dump files from the entire calculation occupied another 1 TB of disk space. The SPH dump files for each calculation begin at TEST000 at time zero and then are numbered sequentially. The spacing in time is not regular (it generally decreases). The SPH dump files are Fortran binary files, written in big endian format and generated by the sphNG code. They can be read, visualised, and manipulated using the free, publicly available SPLASH visualisation code (which reads sphNG dump files), written by Daniel Price, that can be downloaded from: http://users.monash.edu.au/~dprice/splash/ Finally, the MovieAll.zip file contains the SPLASH scripts for generating the density movies associated with the paper that can be found at: http://www.astro.ex.ac.uk/people/mbate/Animations/stellarcore.htmlThis is the dataset that was used to produce the paper published in MNRAS. It contains the output from each of the SPH simulations, including dump files and the scripts used to generate the figures for the paper. To view the paper follow the DOI above or http://hdl.handle.net/10871/14622University of Exeter Visiting International Academic FellowshipMonash UniversityAustralian Research Council Discovery Project GrantEndeavour IPRS and APA postgraduate research scholarshipsUniversity of Exeter Supercomputer: jointly funded by Science and Technology Facilities Council (STFC), Large Facilities Capital Fund of BIS, and the University of ExeterDiRac Complexity computer: jointly funded by Science and Technology Facilities Council (STFC) and the Large Facilities Capital Fund of BI

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore