383 research outputs found
A genome-wide association study identifies protein quantitative trait loci (pQTLs)
There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8×10 -57), CCL4L1 (p = 3.9×10-21), IL18 (p = 6.8×10-13), LPA (p = 4.4×10-10), GGT1 (p = 1.5×10-7), SHBG (p = 3.1×10-7), CRP (p = 6.4×10-6) and IL1RN (p = 7.3×10-6) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8×10-40), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways. © 2008 Melzer et al
Analysis of the genomic homologous recombination in Theilovirus based on complete genomes
At present, Theilovirus is considered to comprise four distinct serotypes, including Theiler's murine encephalomyelitis virus, Vilyuisk human encephalomyelitis virus, Thera virus, and Saffold virus. So far, there is no systematical study that investigated the genomic recombination of Theilovirus. The present study performed the phylogenetic and recombination analysis of Theilovirus over the complete genomes. Seven potentially significant recombination events were identified. However, according to the strains information and references related to the recombinants and their parental strains, four of the recombination events might happen non-naturally. These results will provide valuable hints for future research on evolution and antigenic variability of Theilovirus
Maternal Near Miss and Mortality in a Rural Referral Hospital in Northern Tanzania: A Cross-Sectional Study.
Maternal morbidity and mortality in sub-Saharan Africa remains high despite global efforts to reduce it. In order to lower maternal morbidity and mortality in the immediate term, reduction of delay in the provision of quality obstetric care is of prime importance. The aim of this study is to assess the occurrence of severe maternal morbidity and mortality in a rural referral hospital in Tanzania as proposed by the WHO near miss approach and to assess implementation levels of key evidence-based interventions in women experiencing severe maternal morbidity and mortality. A prospective cross-sectional study was performed from November 2009 until November 2011 in a rural referral hospital in Tanzania. All maternal near misses and maternal deaths were included. As not all WHO near miss criteria were applicable, a modification was used to identify cases. Data were collected from medical records using a structured data abstraction form. Descriptive frequencies were calculated for demographic and clinical variables, outcome indicators, underlying causes, and process indicators. In the two-year period there were 216 maternal near misses and 32 maternal deaths. The hospital-based maternal mortality ratio was 350 maternal deaths per 100,000 live births (95% CI 243-488). The maternal near miss incidence ratio was 23.6 per 1,000 live births, with an overall case fatality rate of 12.9%. Oxytocin for prevention of postpartum haemorrhage was used in 96 of 201 women and oxytocin for treatment of postpartum haemorrhage was used in 38 of 66 women. Furthermore, eclampsia was treated with magnesium sulphate in 87% of all cases. Seventy-four women underwent caesarean section, of which 25 women did not receive prophylactic antibiotics. Twenty-eight of 30 women who were admitted with sepsis received parenteral antibiotics. The majority of the cases with uterine rupture (62%) occurred in the hospital. Maternal morbidity and mortality remain challenging problems in a rural referral hospital in Tanzania. Key evidence-based interventions are not implemented in women with severe maternal morbidity and mortality. Progress can be made through up scaling the use of evidence-based interventions, such as the use of oxytocin for prevention and treatment of postpartum haemorrhage
Effect of pH of amine fluoride containing toothpastes on enamel remineralization in vitro
<p>Abstract</p> <p>Background</p> <p>One of the important factors of the demineralization and remineralization equilibrium of enamel is the pH of the surrounding solutions. Effort has been laid in the formulation of different fluoride compounds and the fluoride content in toothpastes but much less is known about the influence of the pH of the toothpastes on their effectiveness. It was therefore the aim of this study to investigate the influence of different pH levels on enamel remineralization in an in vitro experiment using polarization light microscopy and EDX quantitative element analysis.</p> <p>Methods</p> <p>A 5 × 5 mm window on the enamel surface of 40 caries free extracted human premolars was demineralized in a hydroxyethylcellulose solution at pH 4.8. The teeth were divided into 8 groups and the lower half of the window was covered with varnish serving as control. Each group was then immersed in toothpaste slurry containing amine fluoride (1400 ppm) at pH 4.1, 4.5, 5.1 and 6.9 or control toothpaste slurry without fluoride at pH 4.3, 4.7, 5.3 and 7.0. Serial sections were cut through the lesions and investigated with polarization light microscopy and quantitative EDX element analysis.</p> <p>Results</p> <p>The PLM results showed a decreased porous volume of the body of the lesion after incubation with fluoridated toothpaste at pH 4.53 and 5.16. No differences between the experimental window and the control window were found in the other groups. The quantitative element analysis showed no differences in the element content of any of the groups.</p> <p>Conclusion</p> <p>From the results it can be concluded that slightly acidified fluoridated dentifrices may have a certain positive effect on enamel remineralization.</p
Maternal Environmental Contribution to Adult Sensitivity and Resistance to Obesity in Long Evans Rats
The OLETF rat is an animal model of early onset hyperphagia induced obesity, presenting multiple pre-obese characteristics during the suckling period. In the present study, we used a cross-fostering strategy to assess whether interactions with obese dams in the postnatal environment contributed to the development of obesity.On postnatal Day (PND)-1 OLETF and control LETO pups were cross-fostered to same or opposite strain dams. An independent ingestion test was performed on PND11 and a nursing test on PND18. Rats were sacrificed at weaning or on PND90, and plasma leptin, insulin, cholesterol, triglycerides and alanine aminotransferase (ALT) were assayed. Fat pads were collected and weighed and adipocyte size and number were estimated. Body weight and intake, as well as the estrous cycle of the female offspring were monitored.During the suckling period, the pups' phenotype was almost completely determined by the strain of the mother. However, pups independently ingested food according to their genotype, regardless of their actual phenotype. At adulthood, cross fostered males of both strains and LETO females were affected in regard of their adiposity levels in the direction of the foster dam. On the other hand, OLETF females showed almost no alterations in adiposity but were affected by the strain of the dams in parameters related to the metabolic syndrome. Thus, OLETF females showed reduced liver adiposity and circulating levels of ALT, while LETO females presented a disrupted estrous cycle and increased cholesterol and triglycerides in the long term.The present study provides further support for the early postnatal environment playing a sex-divergent role in programming later life phenotype. In addition, it plays a more central role in determining the functioning of mechanisms involved in energy balance that may provide protection from or sensitivity to later life obesity and pathologies related to the metabolic syndrome
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
Initial clinical experience with frameless optically guided stereotactic radiosurgery/radiotherapy in pediatric patients
The objective of this study is to report our initial experience treating pediatric patients with central nervous system tumors using a frameless, optically guided linear accelerator.
Pediatric patients were selected for treatment after evaluation by a multidisciplinary neuro-oncology team including neurosurgery, neurology, pathology, oncology, and radiation oncology. Prior to treatment, all patients underwent treatment planning using magnetic resonance imaging (MRI) and treatment simulation on a standard computed tomography scanner (CT). For CT simulation, patients were fitted with a customized plastic face mask with a bite block attached to an optical array with four reflective markers. After ensuring adequate reproducibility, these markers were tracked during treatment by an infra-red camera. All treatments were delivered on a Varian Trilogy linear accelerator. The follow-up period ranges from 1–18 months, with a median follow-up of 6 months.
Nine patients, ages ranging from 12 to 19 years old (median age 15 years old), with a variety of tumors have been treated. Patients were treated for juvenile pilocytic astrocytoma (JPA; n = 2), pontine low-grade astrocytoma (n = 1), pituitary adenoma (n = 3), metastatic medulloblastoma (n = 1), acoustic neuroma (n = 1), and pineocytoma (n = 1). We followed patients for a median of 12 months (range 3–18 months) with no in-field failures and were able to obtain encouraging toxicity profiles.
Frameless stereotactic optically guided radiosurgery and radiotherapy provides a feasible and accurate tool to treat a number of benign and malignant tumors in children with minimal treatment-related morbidity
High-Precision, Whole-Genome Sequencing of Laboratory Strains Facilitates Genetic Studies
Whole-genome sequencing is a powerful technique for obtaining the reference sequence information of multiple organisms. Its use can be dramatically expanded to rapidly identify genomic variations, which can be linked with phenotypes to obtain biological insights. We explored these potential applications using the emerging next-generation sequencing platform Solexa Genome Analyzer, and the well-characterized model bacterium Bacillus subtilis. Combining sequencing with experimental verification, we first improved the accuracy of the published sequence of the B. subtilis reference strain 168, then obtained sequences of multiple related laboratory strains and different isolates of each strain. This provides a framework for comparing the divergence between different laboratory strains and between their individual isolates. We also demonstrated the power of Solexa sequencing by using its results to predict a defect in the citrate signal transduction pathway of a common laboratory strain, which we verified experimentally. Finally, we examined the molecular nature of spontaneously generated mutations that suppress the growth defect caused by deletion of the stringent response mediator relA. Using whole-genome sequencing, we rapidly mapped these suppressor mutations to two small homologs of relA. Interestingly, stable suppressor strains had mutations in both genes, with each mutation alone partially relieving the relA growth defect. This supports an intriguing three-locus interaction module that is not easily identifiable through traditional suppressor mapping. We conclude that whole-genome sequencing can drastically accelerate the identification of suppressor mutations and complex genetic interactions, and it can be applied as a standard tool to investigate the genetic traits of model organisms
Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain
A fundamental challenge in the post-genome era is to understand and annotate the consequences of genetic variation, particularly within the context of human tissues. We present a set of integrated experiments that investigate the effects of common genetic variability on DNA methylation and mRNA expression in four human brain regions each from 150 individuals (600 samples total). We find an abundance of genetic cis regulation of mRNA expression and show for the first time abundant quantitative trait loci for DNA CpG methylation across the genome. We show peak enrichment for cis expression QTLs to be approximately 68,000 bp away from individual transcription start sites; however, the peak enrichment for cis CpG methylation QTLs is located much closer, only 45 bp from the CpG site in question. We observe that the largest magnitude quantitative trait loci occur across distinct brain tissues. Our analyses reveal that CpG methylation quantitative trait loci are more likely to occur for CpG sites outside of islands. Lastly, we show that while we can observe individual QTLs that appear to affect both the level of a transcript and a physically close CpG methylation site, these are quite rare. We believe these data, which we have made publicly available, will provide a critical step toward understanding the biological effects of genetic variation
- …