125 research outputs found

    Absence of Runx3 expression in normal gastrointestinal epithelium calls into question its tumour suppressor function

    Get PDF
    The Runx3 transcription factor regulates cell fate decisions during embryonic development and in adults. It was previously reported that Runx3 is strongly expressed in embryonic and adult gastrointestinal tract (GIT) epithelium (Ep) and that its loss causes gastric cancer. More than 280 publications have based their research on these findings and concluded that Runx3 is indeed a tumour suppressor (TS). In stark contrast, using various measures, we found that Runx3 expression is undetectable in GIT Ep. Employing a variety of biochemical and genetic techniques, including analysis of Runx3-GFP and R26LacZ/Runx3Cre or R26tdTomato/Runx3Cre reporter strains, we readily detected Runx3 in GIT-embedded leukocytes, dorsal root ganglia, skeletal elements and hair follicles. However, none of these approaches revealed detectable Runx3 levels in GIT Ep. Moreover, our analysis of the original Runx3LacZ/LacZ mice used in the previously reported study failed to reproduce the GIT expression of Runx3. The lack of evidence for Runx3 expression in normal GIT Ep creates a serious challenge to the published data and undermines the notion that Runx3 is a TS involved in cancer pathogenesis

    Sideband Cooling Micromechanical Motion to the Quantum Ground State

    Full text link
    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantum-limited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass.Comment: 13 pages, 7 figure

    Brain energy metabolism: A roadmap for future research

    Full text link
    Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research

    Best research practices for using the Implicit Association Test

    Get PDF
    This is the final version. Available from Springer via the DOI in this record. Interest in unintended discrimination that can result from implicit attitudes and stereotypes (implicit biases) has stimulated many research investigations. Much of this research has used the Implicit Association Test (IAT) to measure association strengths that are presumed to underlie implicit biases. It had been more than a decade since the last published treatment of recommended best practices for research using IAT measures. After an initial draft by the first author, and continuing through three subsequent drafts, the 22 authors and 14 commenters contributed extensively to refining the selection and description of recommendation-worthy research practices. Individual judgments of agreement or disagreement were provided by 29 of the 36 authors and commenters. Of the 21 recommended practices for conducting research with IAT measures presented in this article, all but two were endorsed by 90% or more of those who felt knowledgeable enough to express agreement or disagreement; only 4% of the totality of judgments expressed disagreement. For two practices that were retained despite more than two judgments of disagreement (four for one, five for the other), the bases for those disagreements are described in presenting the recommendations. The article additionally provides recommendations for how to report procedures of IAT measures in empirical articles.Economic and Social Research Council (ESRC

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research

    Phylogenetic evidence for the invasion of a commercialized European Phasmarhabditis hermaphrodita lineage into North America and New Zealand

    Get PDF
    Biological control (biocontrol) as a component of pest management strategies reduces reliance on synthetic chemicals, and seemingly offers a natural approach that minimizes environmental impact. However, introducing a new organism to new environments as a classical biocontrol agent can have broad and unanticipated biodiversity effects and conservation consequences. Nematodes are currently used in a variety of commercial biocontrol applications, including the use of Phasmarhabditis hermaphrodita as an agent targeting pest slug and snail species. This species was originally discovered in Germany, and is generally thought to have European origins. P. hermaphrodita is sold under the trade name Nemaslug®, and is available only in European markets. However, this nematode species was discovered in New Zealand and the western United States, though its specific origins remained unclear. In this study, we analyzed 45 nematode strains representing eight different Phasmarhabditis species, collected from nine countries around the world. A segment of nematode mitochondrial DNA (mtDNA) was sequenced and subjected to phylogenetic analyses. Our mtDNA phylogenies were overall consistent with previous analyses based on nuclear ribosomal RNA (rRNA) loci. The recently discovered P. hermaphrodita strains in New Zealand and the United States had mtDNA haplotypes nearly identical to that of Nemaslug®, and these were placed together in an intraspecific monophyletic clade with high support in maximum likelihood and Bayesian analyses. We also examined bacteria that co-cultured with the nematode strains isolated in Oregon, USA, by analyzing 16S rRNA sequences. Eight different bacterial genera were found to associate with these nematodes, though Moraxella osloensis, the bacteria species used in the Nemaslug® formulation, was not detected. This study provided evidence that nematodes deriving from the Nemaslug® biocontrol product have invaded countries where its use is prohibited by regulatory agencies and not commercially available
    corecore