1,676 research outputs found

    Chronic breast abscess due to Mycobacterium fortuitum: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p><it>Mycobacterium fortuitum </it>is a rapidly growing group of nontuberculous mycobacteria more common in patients with genetic or acquired causes of immune deficiency. There have been few published reports of <it>Mycobacterium fortuitum </it>associated with breast infections mainly associated with breast implant and reconstructive surgery.</p> <p>Case presentation</p> <p>We report a case of a 51-year-old Caucasian woman who presented to our one-stop breast clinic with a two-week history of left breast swelling and tenderness. Following triple assessment and subsequent incision and drainage of a breast abscess, the patient was diagnosed with <it>Mycobacterium fortuitum </it>and treated with antibiotic therapy and surgical debridement.</p> <p>Conclusion</p> <p>This is a rare case of a spontaneous breast abscess secondary to <it>Mycobacterium fortuitum </it>infection. Recommended treatment is long-term antibacterial therapy and surgical debridement for extensive infection or when implants are involved.</p

    Inflammation-induced DNA damage and damage-induced inflammation: a vicious cycle

    Get PDF
    Inflammation is the ultimate response to the constant challenges of the immune system by microbes, irritants or injury. The inflammatory cascade initiates with the recognition of microorganism-derived pathogen associated molecular patterns (PAMPs) and host cell-derived damage associated molecular patterns (DAMPs) by the pattern recognition receptors (PRRs). DNA as a molecular PAMP or DAMP is sensed directly or via specific binding proteins to instigate pro-inflammatory response. Some of these DNA binding proteins also participate in canonical DNA repair pathways and recognise damaged DNA to initiate DNA damage response. In this review we aim to capture the essence of the complex interplay between DNA damage response and the pro-inflammatory signalling through representative examples

    Intra-tumour genetic heterogeneity and poor chemoradiotherapy response in cervical cancer

    Get PDF
    Background: Intra-tumour genetic heterogeneity has been reported in both leukaemias and solid tumours and is implicated in the development of drug resistance in CML and AML. The role of genetic heterogeneity in drug response in solid tumours is unknown. Methods: To investigate intra-tumour genetic heterogeneity and chemoradiation response in advanced cervical cancer, we analysed 10 cases treated on the CTCR-CE01 clinical study. Core biopsies for molecular profiling were taken from four quadrants of the cervix pre-treatment, and weeks 2 and 5 of treatment. Biopsies were scored for cellularity and profiled using Agilent 180k human whole genome CGH arrays. We compared genomic profiles from 69 cores from 10 patients to test for genetic heterogeneity and treatment effects at weeks 0, 2 and 5 of treatment. Results: Three patients had two or more distinct genetic subpopulations pre-treatment. Subpopulations within each tumour showed differential responses to chemoradiotherapy. In two cases, there was selection for a single intrinsically resistant subpopulation that persisted at detectable levels after 5 weeks of chemoradiotherapy. Phylogenetic analysis reconstructed the order in which genomic rearrangements occurred in the carcinogenesis of these tumours and confirmed gain of 3q and loss of 11q as early events in cervical cancer progression. Conclusion: Selection effects from chemoradiotherapy cause dynamic changes in genetic subpopulations in advanced cervical cancers, which may explain disease persistence and subsequent relapse. Significant genetic heterogeneity in advanced cervical cancers may therefore be predictive of poor outcome

    Genetic correlations between diabetes and glaucoma: an analysis of continuous and dichotomous phenotypes

    Get PDF
    Purpose: A genetic correlation is the proportion of phenotypic variance between traits that is shared on a genetic basis. Here we explore genetic correlations between diabetes- and glaucoma-related traits.Design: Cross-sectional study.Methods: We assembled genome-wide association study summary statistics from European-derived participants regarding diabetes-related traits like fasting blood sugar (FBS) and type 2 diabetes (T2D) and glaucoma-related traits (intraocular pressure (IOP), central corneal thickness (CCT), corneal hysteresis (CH), corneal resistance factor (CRF), cup-disc ratio (CDR), and primary open-angle glaucoma (POAG)). We included data from the National Eye Institute Glaucoma Human Genetics Collaboration Heritable Overall Operational Database, the UK Biobank and the International Glaucoma Genetics Consortium. We calculated genetic correlation (rg) between traits using linkage disequilibrium score regression. We also calculated genetic correlations between IOP, CCT and selected diabetes-related traits based on individual level phenotype data in two Northern European population-based samples using pedigree information and Sequential Oligogenic Linkage Analysis Routines (SOLAR).Results: Overall, there was little rg between diabetes- and glaucoma-related traits. Specifically, we found a non-significant negative correlation between T2D and POAG (rg=-0.14; p=0.16). Using SOLAR, the genetic correlations between measured IOP, CCT, FBS, fasting insulin and hemoglobin A1c, were null. In contrast, genetic correlations between IOP and POAG (rg β‰₯0.45; p≀3.0E-04) and between CDR and POAG were high (rg =0.57; p=2.8E-10). However, genetic correlations between corneal properties (CCT, CRF and CH) and POAG were low (rg range: -0.18 - 0.11) and non-significant (pβ‰₯0.07).Conclusion: These analyses suggest there is limited genetic correlation between diabetes- and glaucoma-related traits

    A Synthesis of Tagging Studies Examining the Behaviour and Survival of Anadromous Salmonids in Marine Environments

    Get PDF
    This paper synthesizes tagging studies to highlight the current state of knowledge concerning the behaviour and survival of anadromous salmonids in the marine environment. Scientific literature was reviewed to quantify the number and type of studies that have investigated behaviour and survival of anadromous forms of Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar), brown trout (Salmo trutta), steelhead (Oncorhynchus mykiss), and cutthroat trout (Oncorhynchus clarkii). We examined three categories of tags including electronic (e.g. acoustic, radio, archival), passive (e.g. external marks, Carlin, coded wire, passive integrated transponder [PIT]), and biological (e.g. otolith, genetic, scale, parasites). Based on 207 papers, survival rates and behaviour in marine environments were found to be extremely variable spatially and temporally, with some of the most influential factors being temperature, population, physiological state, and fish size. Salmonids at all life stages were consistently found to swim at an average speed of approximately one body length per second, which likely corresponds with the speed at which transport costs are minimal. We found that there is relatively little research conducted on open-ocean migrating salmonids, and some species (e.g. masu [O. masou] and amago [O. rhodurus]) are underrepresented in the literature. The most common forms of tagging used across life stages were various forms of external tags, coded wire tags, and acoustic tags, however, the majority of studies did not measure tagging/handling effects on the fish, tag loss/failure, or tag detection probabilities when estimating survival. Through the interdisciplinary application of existing and novel technologies, future research examining the behaviour and survival of anadromous salmonids could incorporate important drivers such as oceanography, tagging/handling effects, predation, and physiology

    NGTS-13b: A hot 4.8 Jupiter-mass planet transiting a subgiant star

    Get PDF
    We report the discovery of the massive hot Jupiter NGTS-13b by the Next Generation Transit Survey (NGTS). The V = 12.7 host star is likely in the subgiant evolutionary phase with log gβˆ—_{*} = 4.04 Β±\pm 0.05, Teff_{eff} = 5819 Β±\pm 73 K, Mβˆ—_{*} = 1.30βˆ’0.18+0.11^{+0.11}_{-0.18} MβŠ™_{\odot}, and Rβˆ—_{*} = 1.79 Β±\pm 0.06 RβŠ™_{\odot}. NGTS detected a transiting planet with a period of P = 4.12 days around the star, which was later validated with the Transiting Exoplanet Survey Satellite (TESS; TIC 454069765). We confirm the planet using radial velocities from the CORALIE spectrograph. Using NGTS and TESS full-frame image photometry combined with CORALIE radial velocities we determine NGTS-13b to have a radius of RP_{P} = 1.142 Β±\pm 0.046 RJup_{Jup}, mass of MP_{P} = 4.84 Β±\pm 0.44 MJup_{Jup} and eccentricity e = 0.086 Β±\pm 0.034. Some previous studies suggest that ∼\sim4 MJup_{Jup} may be a border between two separate formation scenarios (e.g., core accretion and disk instability) and that massive giant planets share similar formation mechanisms as lower-mass brown dwarfs. NGTS-13b is just above 4 MJup_{Jup} making it an important addition to the statistical sample needed to understand the differences between various classes of substellar companions. The high metallicity, [Fe/H] = 0.25 Β±\pm 0.17, of NGTS-13 does not support previous suggestions that massive giants are found preferentially around lower metallicity host stars, but NGTS-13b does support findings that more massive and evolved hosts may have a higher occurrence of close-in massive planets than lower-mass unevolved stars

    Analysis of the TGFΞ² functional pathway in epithelial ovarian carcinoma

    Get PDF
    Epithelial ovarian carcinoma is often diagnosed at an advanced stage of disease and is the leading cause of death from gynaecological neoplasia. The genetic changes that occur during the development of this carcinoma are poorly understood. It has been proposed that IGFIIR, TGFΞ²1 and TGFΞ²RII act as a functional unit in the TGFΞ² growth inhibitory pathway, and that somatic loss-of-function mutations in any one of these genes could lead to disruption of the pathway and subsequent loss of cell cycle control. We have examined these 3 genes in 25 epithelial ovarian carcinomas using single-stranded conformational polymorphism analysis and DNA sequence analysis. A total of 3 somatic missense mutations were found in the TGFΞ²RII gene, but none in IGFRII or TGFΞ²1. An association was found between TGFΞ²RII mutations and histology, with 2 out of 3 clear cell carcinomas having TGFΞ²RII mutations. This data supports other evidence from mutational analysis of the PTEN and Ξ²-catenin genes that there are distinct developmental pathways responsible for the progression of different epithelial ovarian cancer histologic subtypes. Β© 2001 Cancer Research Campaign http://www.bjcancer.co

    DNA Damage, Somatic Aneuploidy, and Malignant Sarcoma Susceptibility in Muscular Dystrophies

    Get PDF
    Albeit genetically highly heterogeneous, muscular dystrophies (MDs) share a convergent pathology leading to muscle wasting accompanied by proliferation of fibrous and fatty tissue, suggesting a common MD–pathomechanism. Here we show that mutations in muscular dystrophy genes (Dmd, Dysf, Capn3, Large) lead to the spontaneous formation of skeletal muscle-derived malignant tumors in mice, presenting as mixed rhabdomyo-, fibro-, and liposarcomas. Primary MD–gene defects and strain background strongly influence sarcoma incidence, latency, localization, and gender prevalence. Combined loss of dystrophin and dysferlin, as well as dystrophin and calpain-3, leads to accelerated tumor formation. Irrespective of the primary gene defects, all MD sarcomas share non-random genomic alterations including frequent losses of tumor suppressors (Cdkn2a, Nf1), amplification of oncogenes (Met, Jun), recurrent duplications of whole chromosomes 8 and 15, and DNA damage. Remarkably, these sarcoma-specific genetic lesions are already regularly present in skeletal muscles in aged MD mice even prior to sarcoma development. Accordingly, we show also that skeletal muscle from human muscular dystrophy patients is affected by gross genomic instability, represented by DNA double-strand breaks and age-related accumulation of aneusomies. These novel aspects of molecular pathologies common to muscular dystrophies and tumor biology will potentially influence the strategies to combat these diseases

    The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle

    Get PDF
    Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the β€œfurnace” that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 107:430–435, 2010). Inhibition of the myosin ATPase activity in the SRX was suggested to be caused by binding of the myosin head to the core of the thick filament in a structural motif identified earlier by electron microscopy. To be compatible with the basal metabolic rate observed in vivo for resting muscle, most myosin heads would have to be in the SRX. Modulation of the population of this state, relative to the normal relaxed state, was proposed to be a major contributor to adaptive thermogenesis in resting muscle. Transfer of only 20% of myosin heads from the SRX into the normal relaxed state would cause muscle thermogenesis to double. Phosphorylation of the myosin regulatory light chain was shown to transfer myosin heads from the SRX into the relaxed state, which would increase thermogenesis. In particular, thermogenesis by myosin has been proposed to play a role in the dissipation of calories during overfeeding. Up-regulation of muscle thermogenesis by pharmaceuticals that target the SRX would provide new approaches to the treatment of obesity or high blood sugar levels
    • …
    corecore