314 research outputs found

    A U-HPLC-ESI-MS/MS-based stable isotope dilution method for the detection and quantitation of methotrexate in plasma

    Get PDF
    INTRODUCTION: High-dose methotrexate (MTX) is used in the treatment of proliferative diseases such as acute lymphoblastic leukemia. Therapeutic drug monitoring of plasma MTX is important to monitor efficacy and adverse events. The authors aimed to develop a liquid chromatography, electrospray ionization, tandem mass spectrometry (LC-ESI-MS/MS)-based method to determine MTX in plasma for therapeutic drug monitoring and pharmacokinetic studies. METHODS: Samples were analyzed using a Waters Acquity UPLC and Quattro Premier XE. A Waters Acquity UPLC BEH C18 column (2.1 mm x 100 mm, 1.7 μm) was used running an isocratic mobile phase of 21% methanol and 10 mM ammonium bicarbonate. The electrospray was operated in the positive ionization mode monitoring the following mass transitions: m/z 455.2 > 308.2 for MTX and m/z 458.2 > 311.2 for MTXd3. The analysis combined straightforward sample preparation, consisting of dilution and protein precipitation, with a 3-minute run time. RESULTS: The method was linear up to 50 μM (r > 0.99), and the coefficient of variation was 1:10, was 5 nM. Method comparison with the Abbott TDx fluorescent polarization immunoassay (FPIA) showed excellent agreement, and a small but significant negative constant bias was detected (LC-MS/MS = 0.98 x FPIA - 7.3). CONLUSIONS: The authors developed a specific and sensitive stable isotope dilution LC-ESI-MS/MS method to monitor MTX concentrations in plasma within the clinically relevant range. The method can be easily applied in clinical laboratories because it combines straightforward sample pretreatment with LC-MS/MS. Copyrigh

    Langevin Simulation of Thermally Activated Magnetization Reversal in Nanoscale Pillars

    Full text link
    Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model incorporating thermal fluctuations and dipole-dipole interactions (calculated by the Fast Multipole Method) are presented for systems composed of nanoscale iron pillars of dimension 9 nm x 9 nm x 150 nm. Hysteresis loops generated under sinusoidally varying fields are obtained, while the coercive field is estimated to be 1979 ±\pm 14 Oe using linear field sweeps at T=0 K. Thermal effects are essential to the relaxation of magnetization trapped in a metastable orientation, such as happens after a rapid reversal of an external magnetic field less than the coercive value. The distribution of switching times is compared to a simple analytic theory that describes reversal with nucleation at the ends of the nanomagnets. Results are also presented for arrays of nanomagnets oriented perpendicular to a flat substrate. Even at a separation of 300 nm, where the field from neighboring pillars is only \sim 1 Oe, the interactions have a significant effect on the switching of the magnets.Comment: 19 pages RevTeX, including 12 figures, clarified discussion of numerical technique

    Hydrodynamical Description of 200 A GeV/c S+Au Collisions: Hadron and Electromagnetic Spectra

    Full text link
    We study relativistic S+Au collisions at 200 A GeV/c using a hydrodynamical approach. We test various equations of state (EOSs), which are used to describe the strongly interacting matter at densities attainable in the CERN-SPS heavy ion experiments. For each EOS, suitable initial conditions can be determined to reproduce the experimental hadron spectra; this emphasizes the ambiguity between the initial conditions and the EOS in such an approach. Simultaneously, we calculate the resulting thermal photon and dielectron spectra, and compare with experiments. If one allows the excitation of resonance states with increasing temperature, the electro-magnetic signals from scenarios with and without phase transition are very similar and are not resolvable within the current experimental resolution. With regard to the CERES dilepton data, none of the EOSs considered, in conjunction with the standard leading order dilepton rates, succeed in reproducing the observed excess of dileptons below the rho peak. Our work, however, suggests that an improved measurement of the photon and dilepton spectra has the potential to strongly constrain the EOS.Comment: Uses REVTeX, 48 pages, 13 Postscript figure

    Density dependent hadron field theory for neutron stars with antikaon condensates

    Get PDF
    We investigate KK^- and Kˉ0\bar K^0 condensation in β\beta-equilibrated hyperonic matter within a density dependent hadron field theoretical model. In this model, baryon-baryon and (anti)kaon-baryon interactions are mediated by the exchange of mesons. Density dependent meson-baryon coupling constants are obtained from microscopic Dirac Brueckner calculations using Groningen and Bonn A nucleon-nucleon potential. It is found that the threshold of antikaon condensation is not only sensitive to the equation of state but also to antikaon optical potential depth. Only for large values of antikaon optical potential depth, KK^- condensation sets in even in the presence of negatively charged hyperons. The threshold of Kˉ0\bar K^0 condensation is always reached after KK^- condensation. Antikaon condensation makes the equation of state softer thus resulting in smaller maximum mass stars compared with the case without any condensate.Comment: 20 pages, 7 figures; final version to appear in Physical Review

    Coherent Compton scattering on light nuclei in the delta resonance region

    Full text link
    Coherent Compton scattering on light nuclei in the delta resonance region is studied in the impulse approximation and is shown to be a sensitive probe of the in-medium properties of the delta resonance. The elementary amplitude on a single nucleon is calculated from the unitary K-matrix approach developed previously. Modifications of the properties of the delta resonance due to the nuclear medium are accounted for through the self-energy operator of the delta, calculated from the one-pion loop. The dominant medium effects such as the Pauli blocking, mean-field modification of the nucleon and delta masses, and particle-hole excitations in the pion propagator are consistently included in nuclear matter.Comment: 30 pages, 11 figures, accepted for publication in Phys. Rev.

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl

    Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

    Get PDF
    We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.Comment: 20 pages and 5 figure

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
    corecore