310 research outputs found

    Pond fractals in a tidal flat

    Get PDF
    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces

    Racial differences in user experiences and perceived value of electronic symptom monitoring in a cohort of black and white bladder and prostate cancer patients

    Get PDF
    Purpose: Electronic patient-reported outcomes (ePROs) are increasingly being used for symptom monitoring during routine cancer care, but have rarely been evaluated in diverse patient populations. We assessed ePRO user experiences and perceived value among Black and White cancer patients. Methods: We recruited 30 Black and 49 White bladder and prostate cancer patients from a single institution. Participants reported symptoms using either a web-based or automated telephone interface over 3 months and completed satisfaction surveys and qualitative interviews focused on user experiences and value. Using a narrative mixed methods approach, we evaluated overall and race-specific differences in ePRO user experiences and perceived value. Results: Most participants selected the web-based system, but Blacks were more likely to use the automated telephone-based system than Whites. In satisfaction surveys, Whites more commonly reported ease in understanding and reporting symptoms compared with Blacks. Blacks more often reported that the ePRO system was helpful in facilitating symptom-related discussions with clinicians. During interviews, Blacks described how the ePRO helped them recognize symptoms, while Whites found value in better understanding and tracking symptoms longitudinally. Blacks also expressed preferences for paper-based ePRO options due to perceived ease in better understanding of symptom items. Conclusion: Electronic patient-reported outcomes are perceived as valuable for variable reasons by Black and White cancer populations, with greater perceived value for communicating with clinicians reported among Blacks. To optimize equitable uptake of ePROs, oncology practices should offer several ePRO options (e.g., web-based, phone-based), as well as paper-based options, and consider the e-health literacy needs of patients during implementation

    Universal quantum interfaces

    Get PDF
    To observe or control a quantum system, one must interact with it via an interface. This letter exhibits simple universal quantum interfaces--quantum input/output ports consisting of a single two-state system or quantum bit that interacts with the system to be observed or controlled. It is shown that under very general conditions the ability to observe and control the quantum bit on its own implies the ability to observe and control the system itself. The interface can also be used as a quantum communication channel, and multiple quantum systems can be connected by interfaces to become an efficient universal quantum computer. Experimental realizations are proposed, and implications for controllability, observability, and quantum information processing are explored.Comment: 4 pages, 3 figures, RevTe

    Composite grading algorithm for the National Cancer Institute’s Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE)

    Get PDF
    Background: The Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events is an item library designed for eliciting patient-reported adverse events in oncology. For each adverse event, up to three individual items are scored for frequency, severity, and interference with daily activities. To align the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events with other standardized tools for adverse event assessment including the Common Terminology Criteria for Adverse Events, an algorithm for mapping individual items for any given adverse event to a single composite numerical grade was developed and tested. Methods: A five-step process was used: (1) All 179 possible Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events score combinations were presented to 20 clinical investigators to subjectively map combinations to single numerical grades ranging from 0 to 3. (2) Combinations with <75% agreement were presented to investigator committees at a National Clinical Trials Network cooperative group meeting to gain majority consensus via anonymous voting. (3) The resulting algorithm was refined via graphical and tabular approaches to assure directional consistency. (4) Validity, reliability, and sensitivity were assessed in a national study dataset. (5) Accuracy for delineating adverse events between study arms was measured in two Phase III clinical trials (NCT02066181 and NCT01522443). Results: In Step 1, 12/179 score combinations had <75% initial agreement. In Step 2, majority consensus was reached for all combinations. In Step 3, five grades were adjusted to assure directional consistency. In Steps 4 and 5, composite grades performed well and comparably to individual item scores on validity, reliability, sensitivity, and between-arm delineation. Conclusion: A composite grading algorithm has been developed and yields single numerical grades for adverse events assessed via the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events, and can be useful in analyses and reporting

    The effect of twisted magnetic field on the resonant absorption of MHD waves in coronal loops

    Full text link
    The standing quasi modes in a cylindrical incompressible flux tube with magnetic twist that undergoes a radial density structuring is considered in ideal magnetohydrodynamics (MHD). The radial structuring is assumed to be a linearly varying density profile. Using the relevant connection formulae, the dispersion relation for the MHD waves is derived and solved numerically to obtain both the frequencies and damping rates of the fundamental and first-overtone modes of both the kink (m=1) and fluting (m=2,3) waves. It was found that a magnetic twist will increase the frequencies, damping rates and the ratio of the oscillation frequency to the damping rate of these modes. The period ratio P_1/P_2 of the fundamental and its first-overtone surface waves for kink (m=1) and fluting (m=2,3) modes is lower than 2 (the value for an untwisted loop) in the presence of twisted magnetic field. For the kink modes, particularly, the magnetic twists B_{\phi}/B_z=0.0065 and 0.0255 can achieve deviations from 2 of the same order of magnitude as in the observations. Furthermore, for the fundamental kink body waves, the frequency bandwidth increases with increasing the magnetic twist.Comment: 18 pages, 9 figure

    Transverse oscillations of coronal loops

    Get PDF
    On 14 July 1998 TRACE observed transverse oscillations of a coronal loop generated by an external disturbance most probably caused by a solar flare. These oscillations were interpreted as standing fast kink waves in a magnetic flux tube. Firstly, in this review we embark on the discussion of the theory of waves and oscillations in a homogeneous straight magnetic cylinder with the particular emphasis on fast kink waves. Next, we consider the effects of stratification, loop expansion, loop curvature, non-circular cross-section, loop shape and magnetic twist. An important property of observed transverse coronal loop oscillations is their fast damping. We briefly review the different mechanisms suggested for explaining the rapid damping phenomenon. After that we concentrate on damping due to resonant absorption. We describe the latest analytical results obtained with the use of thin transition layer approximation, and then compare these results with numerical findings obtained for arbitrary density variation inside the flux tube. Very often collective oscillations of an array of coronal magnetic loops are observed. It is natural to start studying this phenomenon from the system of two coronal loops. We describe very recent analytical and numerical results of studying collective oscillations of two parallel homogeneous coronal loops. The implication of the theoretical results for coronal seismology is briefly discussed. We describe the estimates of magnetic field magnitude obtained from the observed fundamental frequency of oscillations, and the estimates of the coronal scale height obtained using the simultaneous observations of the fundamental frequency and the frequency of the first overtone of kink oscillations. In the last part of the review we summarise the most outstanding and acute problems in the theory of the coronal loop transverse oscillations

    Search for contact interactions, large extra dimensions and finite quark radius in ep collisions at HERA

    Get PDF
    A search for physics beyond the Standard Model has been performed with high-Q^2 neutral current deep inelastic scattering events recorded with the ZEUS detector at HERA. Two data sets, e^+ p \to e^+ X and e^- p \to e^- X, with respective integrated luminosities of 112 pb^-1 and 16 pb^-1, were analyzed. The data reach Q^2 values as high as 40000 GeV^2. No significant deviations from Standard Model predictions were observed. Limits were derived on the effective mass scale in eeqq contact interactions, the ratio of leptoquark mass to the Yukawa coupling for heavy leptoquark models and the mass scale parameter in models with large extra dimensions. The limit on the quark charge radius, in the classical form factor approximation, is 0.85 10^-16 cm.Comment: 28 pages, 4 figures, accepted for publication in Physics Letters

    Clinical Utility and User Perceptions of a Digital System for Electronic Patient-Reported Symptom Monitoring during Routine Cancer Care: Findings from the PRO-TECT Trial

    Get PDF
    PURPOSE There is increasing interest in implementing digital systems for remote monitoring of patients’ symptoms during routine oncology practice. Information is limited about the clinical utility and user perceptions of these systems. METHODS PRO-TECT is a multicenter trial evaluating implementation of electronic patient-reported outcomes (ePROs) among adults with advanced and metastatic cancers receiving treatment at US community oncology practices (ClinicalTrials.gov identifier: NCT03249090). Questions derived from the Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE) are administered weekly by web or automated telephone system, with alerts to nurses for severe or worsening symptoms. To elicit user feedback, surveys were administered to participating patients and clinicians. RESULTS Among 496 patients across 26 practices, the majority found the system and questions easy to understand (95%), easy to use (93%), and relevant to their care (91%). Most patients reported that PRO information was used by their clinicians for care (70%), improved discussions with clinicians (73%), made them feel more in control of their own care (77%), and would recommend the system to other patients (89%). Scores for most patient feedback questions were significantly positively correlated with weekly PRO completion rates in both univariate and multivariable analyses. Among 57 nurses, most reported that PRO information was helpful for clinical documentation (79%), increased efficiency of patient discussions (84%), and was useful for patient care (75%). Among 39 oncologists, most found PRO information useful (91%), with 65% using PROs to guide patient discussions sometimes or often and 65% using PROs to make treatment decisions sometimes or often. CONCLUSION These findings support the clinical utility and value of implementing digital systems for monitoring PROs, including the PRO-CTCAE, in routine cancer care

    Enhancing studies of the connectome in autism using the autism brain imaging data exchange II

    Get PDF
    The second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data resource is an aggregate of resting state functional magnetic resonance imaging (MRI) and corresponding structural MRI and phenotypic datasets. ABIDE II includes datasets from an additional 487 individuals with ASD and 557 controls previously collected across 16 international institutions. The combination of ABIDE I and ABIDE II provides investigators with 2156 unique cross-sectional datasets allowing selection of samples for discovery and/or replication. This sample size can also facilitate the identification of neurobiological subgroups, as well as preliminary examinations of sex differences in ASD. Additionally, ABIDE II includes a range of psychiatric variables to inform our understanding of the neural correlates of co-occurring psychopathology; 284 diffusion imaging datasets are also included. It is anticipated that these enhancements will contribute to unraveling key sources of ASD heterogeneity
    corecore