97 research outputs found

    Observations of the structure and evolution of solar flares with a soft X-ray telescope

    Get PDF
    Soft X ray flare events were observed with the S-056 X-ray telescope that was part of the ATM complement of instruments aboard SKYLAB. Analyses of these data are reported. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-ray emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or reorientation of these features. Brief comparisons with several theories are presented

    Observations of quasi-periodic solar X-ray emission as a result of MHD oscillations in a system of multiple flare loops

    Full text link
    We investigate the solar flare of 20 October 2002. The flare was accompanied by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray emissions (HXR) observed by RHESSI in the 3-50 keV energy range. Analysis of the HXR time profiles in different energy channels made with the Lomb periodogram indicates two statistically significant time periods of about 16 and 36 seconds. The 36-second QPP were observed only in the nonthermal HXR emission in the impulsive phase of the flare. The 16-second QPP were more pronounced in the thermal HXR emission and were observed both in the impulsive and in the decay phases of the flare. Imaging analysis of the flare region, the determined time periods of the QPP and the estimated physical parameters of magnetic loops in the flare region allow us to interpret the observations as follows. 1) In the impulsive phase energy was released and electrons were accelerated by successive acts with the average time period of about 36 seconds in different parts of two spatially separated, but interacting loop systems of the flare region. 2) The 36-second periodicity of energy release could be caused by the action of fast MHD oscillations in the loops connecting these flaring sites. 3) During the first explosive acts of energy release the MHD oscillations (most probably the sausage mode) with time period of 16 seconds were excited in one system of the flare loops. 4) These oscillations were maintained by the subsequent explosive acts of energy release in the impulsive phase and were completely damped in the decay phase of the flare.Comment: 14 pages, 4 figure

    European divertor target concepts for DEMO: Design rationales and high heat flux performance

    Get PDF
    The divertor target plates are the most thermally loaded in-vessel components in a fusion reactor where high heat fluxes are produced on the plasma-facing components (PFCs) by intense plasma bombardment, radiation and nuclear heating. For reliable exhaust of huge thermal power, robust and durable divertor target PFCs with a sufficiently large heat removal capability and lifetime has to be developed. Since 2014 in the framework of the preconceptual design activities of the EUROfusion DEMO project, integrated R&D efforts have been made in the subproject ‘Target development’ of the work package ‘Divertor’ to develop divertor target PFCs for DEMO. Recently, the first R&D phase was concluded where six (partly novel) target PFC concepts were developed and evaluated by means of non-destructive inspections and high-heat-flux fatigue testing. In this paper, the major achievements of the first phase activities in this subproject are presented focusing on the design rationales of the target PFC concepts, technology options employed for small-scale mock-up fabrication and the results of the first round high-heat-flux qualification test campaign. It is reported that the mock-ups of three PFC concepts survived up to 500 loading cycles at 20 MW/m² (with hot water cooling at 130 °C) without any discernable indication of degradation in performance or structural integrity

    Divertor of the European DEMO: Engineering and technologies for power exhaust

    Get PDF
    In a power plant scale fusion reactor, a huge amount of thermal power produced by the fusion reaction and external heating must be exhausted through the narrow area of the divertor targets. The targets must withstand the intense bombardment of the diverted particles where high heat fluxes are generated and erosion takes place on the surface. A considerable amount of volumetric nuclear heating power must also be exhausted. To cope with such an unprecedented power exhaust challenge, a highly efficient cooling capacity is required. Furthermore, the divertor must fulfill other critical functions such as nuclear shielding and channeling (and compression) of exhaust gas for pumping. Assuring the structural integrity of the neutron-irradiated (thus embrittled) components is a crucial prerequisite for a reliable operation over the lifetime. Safety, maintainability, availability, waste and costs are another points of consideration. In late 2020, the Pre-Conceptual Design activities to develop the divertor of the European demonstration fusion reactor were officially concluded. On this occasion, the baseline design and the key technology options were identified and verified by the project team (EUROfusion Work Package Divertor) based on seven years of R&D efforts and endorsed by Gate Review Panel. In this paper, an overview of the load specifications, brief descriptions of the design and the highlights of the technology R&D work are presented together with the further work still needed

    The DEMO magnet system – Status and future challenges

    Get PDF
    We present the pre-concept design of the European DEMO Magnet System, which has successfully passed the DEMO plant-level gate review in 2020. The main design input parameters originate from the so-called DEMO 2018 baseline, which was produced using the PROCESS systems code. It defines a major and minor radius of 9.1 m and 2.9 m, respectively, an on-axis magnetic field of 5.3 T resulting in a peak field on the toroidal field (TF) conductor of 12.0 T. Four variants, all based on low-temperature superconductors (LTS), have been designed for the 16 TF coils. Two of these concepts were selected to be further pursued during the Concept Design Phase (CDP): the first having many similarities to the ITER TF coil concept and the second being the most innovative one, based on react-and-wind (RW) Nb3Sn technology and winding the coils in layers. Two variants for the five Central Solenoid (CS) modules have been investigated: an LTS-only concept resembling to the ITER CS and a hybrid configuration, in which the innermost layers are made of high-temperature superconductors (HTS), which allows either to increase the magnetic flux or to reduce the outer radius of the CS coil. Issues related to fatigue lifetime which emerged in mechanical analyses will be addressed further in the CDP. Both variants proposed for the six poloidal field coils present a lower level of risk for future development. All magnet and conductor design studies included thermal-hydraulic and mechanical analyses, and were accompanied by experimental tests on both LTS and HTS prototype samples (i.e. DC and AC measurements, stability tests, quench evolution etc.). In addition, magnet structures and auxiliary systems, e.g. cryogenics and feeders, were designed at pre-concept level. Important lessons learnt during this first phase of the project were fed into the planning of the CDP. Key aspects to be addressed concern the demonstration and validation of critical technologies (e.g. industrial manufacturing of RW Nb3Sn and HTS long conductors, insulation of penetrations and joints), as well as the detailed design of the overall Magnet System and mechanical structures
    corecore