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Abstract 6 

Plant-Best is a novel tool for the selection of the most suitable plant cover against rainfall-induced 7 

shallow landslides. It explores the plant-derived likelihood of slope failure reduction under wetting and 8 

drying events, respectively. Plant-Best comprises five comprehensive open-source modules built in the 9 

freeware R. The modules’ objectives range from the spatial detection of landslide-prone zones to the 10 

integrated evaluation of plant-derived hydro-mechanical effects on sloped terrain; from the selection of 11 

the best performing plant species to the identification of sensitive plant traits. In this paper, we provide 12 

a detailed description of the Plant-Best modules and we show how this holistic tool can be effectively 13 

employed for plant cover selection in a shallow landslide context. To do so, we demonstrate the 14 

application of Plant-Best on a site with a history of slope failures in Northeast Scotland, where the tool 15 

is implemented using seven native plant species including both woody and herbaceous vegetation. The 16 

results reveal that different plant species were suitable for protection depending on the hydrological 17 

conditions – i.e. wetting or drying. Plant effects were limited to the topmost soil and, in general, 18 

underweight plants with dense root systems and broad thick canopies offered the best resistance to 19 

failure. This suggested that botanically diverse slopes with different plant functional groups are 20 

desirable for a more effective slope protection. Plant-Best proved to be a relatively simple but robust 21 

tool for the detection of landslide-prone zones, the selection and evaluation of plant covers, and the 22 

identification of relevant plant traits related to shallow landslides mitigation. The open-source nature of 23 

the tool confers a great versatility and applicability to the tool which can be deployed as a multi-24 

disciplinary aid to the decision making process.  25 

 26 

Keywords: Plant selection, landslide, eco-hydrological model, GIS, soil bioengineering, forestry, 27 

landscaping, slope protection, R 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 
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1. INTRODUCTION 36 

 37 

Soil loss is a global natural threat to the integrity and function of the Earth’s ecosystems (EEA, 38 

2012; Schwilch et al., 2016). In particular, rainfall-induced landslides have been acknowledged as one 39 

of the main drivers of soil loss globally (Sidle and Bogaard, 2016). Landslides severity and recurrence 40 

will likely increase under the predicted intensification of the hydrological cycle due to climate change 41 

(Roderick et al., 2014; Gariano and Guzzetti, 2016), creating an urgent need to take action against 42 

potential soil mass wasting. The existing body of studies focusing on the prediction of landslides 43 

timing and location is broad and it is still growing (Sidle and Bogaard, 2016). Landslides prediction has 44 

commonly been based on the establishment of rainfall triggering thresholds on steep areas (Gariano et 45 

al., 2015) and on the use of spatial algorithms able to include terrain features (slope, aspect, curvature) 46 

as predictors of landslides (e.g. Vorpahl et al., 2012). Landslide prediction outcomes are normally 47 

employed for mapping and establishing landslide hazards, which are then used to estimate landslide-48 

derived risks (e.g. life and property losses, infrastructure damages; van Westen et al., 2006). However, 49 

tools and research aiming at evaluating what prevents rather than what triggers landslides, although 50 

topical, still need further development.  51 

The sustainable use of plants for soil protection has been widely accepted (see Norris et al., 2008 52 

and Stokes et al., 2014 for review). It has been demonstrated that plants are able to provide mechanical 53 

and hydrological reinforcement to sloped soils (Gonzalez-Ollauri and Mickovski, 2017a, 2017c) 54 

additional to the enhanced biodiversity (Gonzalez-Ollauri and Mickovski, 2017b). The existing 55 

research on the topic has led to numerical models that aim at quantifying the potential of vegetation for 56 

landslide mitigation (e.g. see Wu, 2015 for review). Most of these models tend to include the 57 

mechanical soil reinforcement provided by vegetation roots by using information related to the root 58 

spread in the soil and the root material strength (Stokes et al., 2009). However, there are issues that the 59 

existing models do not address. On the one hand, the hydrological effect of vegetation against 60 

landslides, albeit commonly discussed, is poorly understood and quantified (Stokes et al., 2014). In 61 

fact, the inclusion of the hydrological effects of vegetation within slope stability analyses still remains 62 

challenging (Gonzalez-Ollauri and Mickovski, 2017c). Additionally, there are plant-related processes 63 

that could be detrimental for slope stability and, yet they are usually neglected. For example, woody 64 

plants tend to concentrate large volumes of rainwater around the stem (i.e. stemflow; Levia and 65 

Germer, 2015). It has been observed that stemflow may make its way into the soil through the root 66 

cavities as a bypass flow (Liang et al., 2011). This type of water flow may provoke dramatic changes in 67 

the soil stress-state condition (Lu and Godt, 2013) or result in formation of perched water tables (Liang 68 

et al., 2011), both with negative effects on slope stability. On the other hand, vegetated slope stability 69 

models tend to focus on the landslide triggering mechanisms (e.g. tRIBS+VEGGIE; Ivanov et al., 70 

2008a, 2008b) without paying much attention to what particular plant traits may be relevant for 71 

effective landslide prevention. For example, the size, thickness and morphology of the plant canopy 72 

may affect the water balance above and below the ground (Levia and Germer, 2015). The stem size can 73 

indicate the plant aboveground biomass (Zinais et al., 2005) and, in turn, the root spread in the soil 74 

(Gonzalez-Ollauri and Mickovski, 2016; Tardio et al 2016). The latter is possible by considering the 75 



 4 

allometric relationship between the above- and belowground plant parts (Cheng and Niklas, 2007) 76 

together with a function portraying the root distribution in the soil (e.g. Preti et al., 2010). 77 

From a practical perspective, the existing slope stability models accounting for vegetation effects 78 

cannot be used for plant-species selection. Ideally, a plant selection tool for evaluating the soil 79 

reinforcement ability of different species should combine easily measurable plant traits with a sound 80 

geotechnical basis (Mickovski et al 2006; Stokes et al., 2009), while the environmental variability at 81 

the plant, soil, and climate compartments is also considered. To the best of our knowledge, such a tool 82 

does not yet exist.   83 

Geotechnical engineers, foresters, landscape architects, land planners or restoration ecologists would 84 

benefit from an effective decision-support tool for plant selection against landslides once an ecological 85 

evaluation of the candidate plants has been carried out (Evette et al., 2012; Jones, 2013). Such a tool 86 

will permit to foresee long-term effects produced by different plant covers on slopes, the results of 87 

combining plant functional groups in restoration actions, or the responses under different soil and 88 

climate scenarios. As a result, an effective plant selection tool will contribute to make soil 89 

bioengineering decisions more reliable and effective, ensuring the success of ecological restoration 90 

actions on slopes.    91 

The aim of this paper is to introduce Plant-Best, a novel tool for selection of the most suitable 92 

plant cover against rainfall-induced shallow landslides. In the present paper we provide a step-by-step 93 

description of the Plant-Best workflow and we show how this holistic tool can be employed for an 94 

effective plant cover selection in a shallow landslide or a slope protection context. To do so, Plant-Best 95 

is applied on a site with a history of slope failures in Northeast Scotland and it is implemented using 96 

seven native plant species.  97 

 98 

2. MATERIALS AND METHODS 99 

 100 

2.1. Plant-Best overview   101 

Plant-Best is an open-source, computer-based tool for the selection of the most suitable plant 102 

species against rainfall-induced shallow landslides. It explores the plant-derived likelihood reduction of 103 

slope failure under wetting and drying episodes, respectively. The tool combines five major modules 104 

(Fig. 1). The first module (I, Section 2.2) detects landslide-prone zones or zones for slope restoration 105 

through a GIS-based model approach needing a digital surface model (DSM) as an input. The second 106 

module (II, Section 2.3) consists of a distributed eco-hydrological process-based model (Gonzalez-107 

Ollauri and Mickovski, 2014) that combines the hydrological and mechanical effects of vegetation on 108 

slope stability. This module employs the model inputs generated within the two subsequent modules 109 

(i.e. III and IV) to compute pixel-based slope stability under different soil-plant covers and 110 

hydrological conditions at user-defined soil depths. The third (Section 2.4) and fourth (Section 2.5) 111 

modules generate fixed and stochastic model inputs, respectively. The former generates spatially 112 

explicit soil variables through the implementation of a machine-learning algorithm (i.e. Random 113 

Forest; Breimar et al., 2002). The latter uses the Monte Carlo method (e.g. Ross, 2006) on readily 114 

measurable and available plant-soil-climate information to account for environmental variability. 115 
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Eventually, the fifth module (V, Section 2.6) manages uncertainty by calculating a reliability index 116 

(Malkawi et al., 2000), performs a series of statistical tests to identify the most suitable plant species, 117 

and carries out a sensitivity analysis for the identification of relevant plant traits.  118 

 119 

 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 

 130 

 131 

 132 

2.2. Module I: Landslide-prone zones detector 133 

 134 

This module combines GIS-based path distance and overlay analyses (e.g. Zhu, 2016), and it 135 

is envisaged as a first approximation in the detection of zones prone to slope instability. For a better 136 

illustration of how this module works, the series of required GIS-based tasks (Fig. 2) were carried out 137 

in ESRI ArcGIS 10.  138 

Landslide-prone zones are assumed to occur on steep zones (slope gradient > 20°; e.g. Cimini 139 

et al., 2015) located within two water accumulation areas (e.g. Wilkinson et al., 2002). The water 140 

accumulation areas within the study site can be detected with the path distance analysis, which 141 

ultimately estimates the cartographic depth-to-water index (DTW; White et al., 2012). To proceed with 142 

the path distance analysis, a flow accumulation raster, a slope raster, and a digital surface model (DSM; 143 

2x2 m; GetMapping, 2014) can be employed as source, cost, and surface raster, respectively (Fig. 2). 144 

The flow accumulation and slope rasters can be obtained from the implementation of ArcGIS Spatial 145 

Analyst functions using the DSM as unique input into this module. The output from the path distance 146 

analysis can then be multiplied by the DSM resolution (i.e. 2; 2x2 m: 4 m
2
) to obtain DTW (White et al., 147 

2012). Subsequently, the areas of water accumulation can be buffered depending on the site scale (e.g. 148 

50 m in our case) and overlaid with the slope attribute, to which a high weight should be arbitrarily 149 

given – e.g. buffer+5*slope, as slope failures most likely occur on steeper terrain (Lu and Godt, 2013). 150 

Eventually, those pixels falling within the overlay output and presenting a slope gradient above 20º can 151 

be extracted to obtain the landslide-prone zones raster.   152 

Figure 1. Plant-Best flowchart showing the tool workflow, different modules, and their interconnections. I: 

Landslide-prone zones detection module. II: Integrated model module. III: fixed soil spatial variables generation 

module. IV: Stochastic input variables generation module. V: statistical and sensitivity analysis module.   
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 153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

Figure 2. Module I: Landslide-prone zones detection module summary flowchart showing the implied GIS-based 166 
tasks. Trapezium boxes stand for GIS layers. Oval boxes stand for GIS tasks. The arrows indicate the flow of 167 
tasks.  168 

 169 

2.3. Module II: distributed eco-hydrological model (overview) 170 

 171 

 172 

 173 

 174 

 175 

Plant-Best implements a freeware-based (R v. 3.2.1; R Core Team, 2015), 176 

spatially-upgraded version of an integrated, process-based, eco-hydrological model designed to 177 

quantify the hydro-mechanical effect of vegetation on sloped soil (Fig. 3; Gonzalez-Ollauri and 178 

Mickovski, 2014, 2015, 2017c). The model equations and assumptions are listed in Appendices A and 179 

B, respectively. The model code is provided within the supplementary materials. The required inputs to 180 

operate the model are shown in Table 1. These inputs belong to the plant, soil, and climate 181 

compartments, respectively. The model inputs are processed by Modules III and IV depending on the 182 

input typology - i.e. F: fixed or S: stochastic (Table 1; Fig. 1). The inputs values employed in this study 183 

are shown in Tables 3 and 4.    184 

(a) (b) 

Figure 3. a) Module II: Conceptual model belonging to the Integrated model for the hydro-mechanical effect of 

vegetation against shallow landslides (Gonzalez-Ollauri and Mickovski, 2014, 2017c). b) Flowchart 

summarising the model’s workflow.    
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Table 1. List of input parameters/variables belonging to the plant, soil and climate compartments used to operate 185 
Plant-Best. S: Stochastic; F: Fixed 186 

Compartment Parameter/Variable Symbol Units Type 

Plant Tree-crown area Ac m
2 

S 

 Diameter at breast height DBH m S 

 Aboveground biomass per unit area Ma g m
-2 

S 

 Allometric power-law parameter αa unitless S 

 Allometric scaling parameter βa unitless S 

 Root mass density ρr g cm
-3 

S 

 Mean root tensile strength Tr kPa S 

 Canopy storage capacity Sc mm m
-2 

S 

 Stemflow regression line intercept as unitless S 

 Stemflow regression line slope bs unitless S 

 Leaf area index LAI m
2 

m
-2 

S 

 Light extinction coefficient kc /1 S 

Soil Sand content Sn % F 

 Silt content Sl % F 

 Clay content Cl % F 

 Organic matter content SOM % F 

 Soil porosity Φ /1 F 

 Volumetric moisture content at saturation θs /1 F 

 Volumetric moisture content at field capacity θfc /1 F 

 Volumetric moisture content at wilting point θwp /1 F 

 Soil water available to plants Φ(θfc- θwp) /1 F 

 Saturated hydraulic conductivity Ks m s
-1 

F 

 Hydraulic head of wetting front φwf m F 

 Effective cohesion c’ kPa S 

 Angle of internal friction ϕ’ ° S 

 Inverse air-entry pressure fallow soil α kPa
-1 

S 

 Inverse air-entry pressure vegetated soil αv kPa
-1 

S 

 Pore-size distribution parameter fallow soil n unitless S 

 Pore-size distribution parameter vegetated soil nv unitless S 

 Specific gravity of soil Gs unitless F 

 Unit weight of water γw kPa m
-1 

F 

 Soil depth; vertical coordinate upward positive z m F 

 Ground water table height Hwt m F/S 

Climate Gross rainfall Pg mm S 

 Rainfall duration tr h F 

 Mean rainfall intensity during growing season αc mm event
-1 

S 

 
Frequency of rainfall events during growing 

season 
λc /1 S 

 Potential daily evapotranspiration rate Eu mm d
-1

 m
-2 

S 

 187 

The model is set up for daily discrete meteorological events, and its operational control 188 

volume is the soil-root continuum (Fig. 3). Two state variables are defined within the control volume: 189 

the soil matric suction and the degree of saturation. Both state variables govern the soil stress-state, 190 

which is depicted by the suction stress (i.e. inter-particle stress; Lu and Likos, 2004; Lu et al., 2010) on 191 

the basis of soil hydro-mechanical properties (α and n; Tables 1 and 4). Ultimately, the soil stress-state 192 

governs the slope stability.  193 

The forcing functions governing the stress-state are portrayed by the fluxes of water entering 194 

(i.e. wetting) and exiting (i.e. drying) the control volume, respectively. The water fluxes entering the 195 

soil are represented by the effective rainfall (i.e. gross rainfall minus plant canopy interception) 196 
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infiltrating into the soil, and by the stemflow (i.e. rainfall concentrated around the tree stem) bypassing 197 

the soil-root zone (Liang et al., 2011). The water fluxes exiting the soil are defined by the plant 198 

transpiration. Both types of water fluxes provoke changes in the soil matric suction as the water 199 

experiments a downward or upward flow through the soil-pore space (Lu and Griffiths, 2006; Lu and 200 

Godt, 2013).    201 

Before the model evaluates the state variables and the slope stability conditions, a series of 202 

preliminary steps are carried out (model equations shown in Appendix A): 203 

 204 

2.3.1. Random tree distribution and aboveground biomass  205 

 206 

Firstly, the potential number of trees that can be established on the area to be restored (Nstems) 207 

can be calculated as the ratio of the restoration area to the mean tree-crown area (Ac; Tables 1 and 3). 208 

Tree age can be user-defined by means of assigning different mean Ac values, for instance. Then, the 209 

tree stems are randomly distributed over the restoration area with a bootstrap method with replacement 210 

(Efron, 1979). Subsequently, the tree metrics diameter at breast height (DBH; Tables 1 and 3) and 211 

crown area (Ac) are randomly assigned to each stem with the same method. The latter step allows the 212 

stand canopies to overlap spatially, but it neglects the potential effect derived from this – i.e. the whole 213 

Ac of a given tree individual may contribute to the effect derived from a plant-related mechanism in 214 

which Ac is involved (e.g. rainfall interception, stemflow, transpiration) without interacting with the 215 

canopy of neighbour individuals.  216 

Secondly, the aboveground biomass (Ma; Tables 1 and 3) of each tree can be calculated on the 217 

basis of the randomly assigned DBH using plant species-specific allometric equations (Zianis et al., 218 

2005, Muukkonen and Mäkipää, 2006). For herbaceous covers, however, the former steps are 219 

suppressed and the user must define the aboveground biomass per unit area (e.g. Gonzalez-Ollauri and 220 

Mickovski, 2016, 2017b).  221 

 222 

2.3.2. Root spread and soil-root mechanical reinforcement  223 

 224 

The root spread (Ar(z); mm
2 

m
-1

) within the user-defined soil spatial columns is modelled as a 225 

negative exponential function with the soil depth (Preti et al., 2010; Gonzalez-Ollauri and Mickovski, 226 

2016; see Appendix A). Root spread can be predicted as a function of the root biomass and the rooting 227 

depth. The former can be derived from the plant aboveground biomass (Ma) by considering the above 228 

and belowground biomass allometric coefficients (αa and βa; Tables 1 and 3). Rooting depth depends 229 

on the soil (i.e. soil water available to plants; Φ[θfc - θwp]; Table 1) and climatic features (i.e. mean 230 

rainfall intensity and frequency; αc and λc; Tables 1 and 4). Thus, it is estimated differently for dry 231 

(Preti et al., 2010) and temperate humid climates (Gonzalez-Ollauri and Mickovski, 2016), 232 

respectively. It should be noted that with this rooting depth estimation approach, the impact of the soil 233 

density on the root spread, implicit in the soil porosity (Φ; Craig, 2004), is also included (see 234 

Gonzalez-Ollauri and Mickovski, 2016). However, other root features linked to the estimation of soil-235 

root reinforcement (e.g. root elongation rate and diameter; Stokes et al., 2009) and, related to the soil 236 
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physical properties, could have been considered (e.g. Dexter, 2004; Popova et al., 2016) if more 237 

complex root spread models were required (e.g. topological model; Arnone et al., 2016).  238 

Once the root spread is predicted, it is then distributed over the pixels adjacent to the 239 

randomised tree stem pixels (see Section 2.3.1). With this, asymmetric root systems developing on 240 

slope environments can be simulated, too (e.g. Tardio et al., 2016). Next, the soil-root mechanical 241 

reinforcement (i.e. root apparent cohesion; cR; kPa) can be quantified by using the ‘simple 242 

perpendicular model’ (SPM; Wu et al., 1979), which requires knowledge of the proportion of rooted 243 

soil (i.e. root area ratio; RAR(z)) and the mean root tensile strength (Tr; Tables 1 and 3). SPM was 244 

chosen due to its simplicity, reduced amount of input parameters, and observed realistic application 245 

(Mickovski et al., 2008). SPM accounts for the reinforcement effect of small, non-structural roots 246 

(Mickovski et al., 2009). To avoid potential over predictions of the soil-root reinforcement effect using 247 

SPM, a correction factor of 0.4 was included within the model (Preti, 2013). To consider the effect of 248 

big structural roots (e.g. sinkers or tap roots), the model code can be modified to accommodate other 249 

root reinforcement models (e.g. pull-out model; e.g. Ennos, 1990).    250 

 251 

2.3.3. Aboveground water mass balance: Rainfall interception and stemflow  252 

 253 

The model includes an aboveground water mass balance assessment to estimate the effective 254 

rainfall infiltrating the soil (ER; mm H2O h
-1

) after the gross rainfall (Pg; Table 1) is intercepted by the 255 

canopy (Gonzalez-Ollauri and Mickovski, 2017c). The rainfall interception is estimated as a product of 256 

the canopy storage capacity (Sc; Tables 1 and 3) and Ac. The value of Sc can be changed to 257 

accommodate interception differences throughout the seasons (e.g. growing and dormant).  258 

The concentration of rainwater around the tree stem (i.e. stemflow) can be quantified using 259 

field-derived coefficients (as and bs; Tables 1 and 3) for a stemflow linear model (Gonzalez-Ollauri and 260 

Mickovski, 2017c). The stemflow (St; mm H2O h
-1

) is assumed to concentrate rainfall coming from the 261 

entire tree crown (Ac) and to enter the soil as a jet through the soil-root zone (i.e. bypass flow; qby; mm 262 

H2O h
-1

; Liang et al., 2011) without accounting for the anisotropy of this zone of the soil. The stemflow 263 

is assumed to be negligible for herbaceous species.   264 

 265 

2.3.4. Belowground water mass balance: Infiltration and percolation  266 

 267 

A below ground level (b.g.l) water mass balance is performed to evaluate the effective rainfall 268 

infiltration rate (qi; mm H2O h
-1

) and the subsequent percolation rate (qp; mm H2O h
-1

) within the soil. 269 

The infiltration can be modelled as a piston flow (i.e. sharp wetting front) traveling through the soil at 270 

the same rate as the saturated hydraulic conductivity (Ks; Tables 1 and 3) after ponding has formed on 271 

the surface (i.e. wetting front saturates the soil; after Mein and Larson, 1973). All the non-infiltrating 272 

water is assumed to result in runoff (RF; mm H2O h
-1

) and exit the system. The wetting front stops 273 

moving once the rainfall ceases (i.e. t ≥ tr ; Tables 1 and 4). Then, the excess water within the 274 

infiltration zone (i.e. excess water = θs - θfc; Tables 1 and 4) percolates into the underlying unsaturated 275 

soil traveling at a rate qp (mm H2O h
-1

) and to a distance zperc (m) that depends on the hydraulic 276 
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conductivity function (K(θf); Brooks and Corey, 1964) and the final soil moisture content (θf ) after 277 

percolation.   278 

 279 

2.3.5. Plant transpiration  280 

 281 

The plant transpiration rates (Etp; mm H2O d
-1

 m
-2

; Gonzalez-Ollauri and Mickovski, 2017c) 282 

are estimated on the basis of the potential daily evapotranspiration rate (Eu; mm H2O d
-1 

m
-2

;
 
e.g. 283 

Priestly and Taylor, 1972; Tables 1 and 4) and the vegetation cover features (i.e. crown area (Ac) for 284 

woody and leaf area index (LAI) for all plant covers; Savabi and Williams, 1995) to account for the 285 

potential direct soil evaporation rate below the plant cover (Esp; mm H2O d
-1

 m
-2

). When a pixel is 286 

classified as vegetated (e.g. herbs and grasses), it is assumed that the whole pixel area contributes to 287 

Eu. Based on field observations (Gonzalez-Ollauri and Mickovski, 2017c), it is assumed that the entire 288 

root system contributes to plant transpiration. Thus, steady transpiration rates are assumed within the 289 

soil-root zone.  290 

 291 

2.3.6. Soil stress-state and slope stability 292 

 293 

Changes in the soil stress-state are evaluated through the estimation of suction stress profiles 294 

(σ
s
(z); Lu et al., 2010). These can be derived from the soil matric suction profiles ([ua-uw](z); kPa) 295 

produced by the water fluxes within the soil under wetting (i.e. ER: effective rainfall infiltration; St: 296 

stemflow; Lu and Griffiths, 2006) and drying (i.e. plant transpiration; Etp; e.g. Gonzalez-Ollauri and 297 

Mickovski, 2017c) conditions, respectively. Suction stress can then be employed to estimate profiles of 298 

soil shear resistance (τ(z); kPa) under variable soil saturation conditions (i.e. unified effective stress 299 

principle; Lu and Likos, 2004). Subsequently, slope stability can be assessed through the calculation of 300 

a factor of safety (FoS(z)) with an infinite slope limit equilibrium method (i.e. FoS=resisting 301 

forces/driving forces; FoS ≤ 1 = slope failure; Craig, 2004; Lu and Godt, 2008), where the plant-soil 302 

mechanical reinforcement (cR; kPa) and plant surcharge (Wv; N m
-2

) are also included.  303 

Herein, it is assumed that slope instability events mitigated by vegetation are shallow, 304 

provided that plant-soil reinforcement tends to be limited to the topmost soil (Gonzalez-Ollauri and 305 

Mickovski, 2016; Tardio et al., 2016). Consequently, root systems tend to present a much smaller depth 306 

than the slope length at a given pixel (i.e. pixel size; 2x2 m), justifying the use of the infinite slope 307 

model (Craig, 2004; Lu and Godt, 2013). However, it must be borne in mind that the extent of the root 308 

system may vary on the basis of the soil and climate features (Preti et al., 2010; Gonzalez-Ollauri and 309 

Mickovski, 2016). Hence, the slope stability model should be revised for the case of deep (i.e. > 1 m) 310 

root systems.    311 

 312 

2.4. Module III: Fixed soil spatial variables generator 313 

 314 

The fixed soil spatial variables (SSVs) are generated from the inputs fed into Module III (i.e. 315 

fixed inputs, F; Table 1) by means of fitting Random Forest models (RF; Breiman, 2001) using the 316 
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package ‘randomForest’ (Liaw and Wiener, 2002) of the freeware R v. 3.2.1 (R Core Team, 2015). The 317 

fixed SSVs RF models can be fitted following the principles of the scorpan approach (McBratney et 318 

al., 2003). scorpan is a mnemonic for factors predicting soil attributes: soil, climate, organisms, relief, 319 

parent materials, age, and spatial position (Malone, 2013). Hence, a given RF model is fitted between 320 

the inputs for a given SSV and the principal terrain attributes derived from the DSM (i.e. slope, 321 

curvature, aspect), as well as the land cover found at the same locations where the SSVs are studied. 322 

SSVs are then spatially interpolated, or predicted, on the terrain attributes present over the rest of the 323 

study space. The RF models are fitted in a cascade fashion (Table 2) – i.e. each predicted SSV acts as 324 

predictor for the subsequent SSV.  325 

All RF models are validated with a random holdback method (i.e. jackknife; Efron, 1979). 326 

Thus, each RF model is fitted with 70 % of the inputs for a SSV and the other 30 % (out-of-bag 327 

samples) are left for evaluating the model goodness of fit. The goodness of fit is assessed through the 328 

estimation of the coefficient of determination (R
2
), the residual mean square error (RMSE) and 329 

percentage of variance explained (Malone, 2013). To ensure a reliable spatial prediction for a given 330 

SSV, the variables’ sample size has to vary depending on the study site scale. It is advisable, however, 331 

to feed this module with variables sampled with an adequate spatial coverage over the study site 332 

(Malone, 2013). In our case, we employed a well-distributed sample size presenting more than 30 333 

replicates to fit the RF models.  The outcome from fitting RF for the different SSV after Plant-Best 334 

parameterisation (Section 2.7) is shown in Appendix C. 335 

 336 

Table 2. Soil spatial variables prediction formulas and predictor variables used with the RF algorithm. Sn: sand 337 

content (%); Sl: silt content (%); Cl: clay content (%); SOM: soil organic matter (%); Φ: soil porosity (unitless). 338 

SSV Formula and predictor variables 

Sn Sn=slope+aspect+curvature+land cover 

Sl Sl=slope+aspect+curvature+land cover+sand 

Cl Cl= slope+aspect+curvature+land cover+sand+silt 

SOM SOM= slope+aspect+curvature+land cover+sand+silt+clay 

Φ Φ= slope+aspect+curvature+land cover+sand+silt+clay+soil organic matter 

 339 

2.5 Module IV: Stochastic variables generator 340 

 341 

Plant-Best implements the Monte Carlo method (MC; e.g. Ross, 2006) for the generation of 342 

stochastic model input variables from the inputs fed into Module IV (i.e. stochastic inputs, S; Table 1). 343 

MC is employed to control the existing random environmental variability at the plant, soil, and climate 344 

compartments.  Firstly, an empirical statistical distribution can be fitted to each input stochastic 345 

variable (Tables 1, 3 and 4) by using the functions provided in the R v.3.2.1 package ‘fitdistrplus’ 346 

(Delignette-Muller and Dutang, 2014). Then, random variable numbers are generated in the light of the 347 

fitted statistical distributions. Finally, variable values can be randomly extracted with a bootstrap 348 

method with replacement (Efron, 1979) to proceed with the subsequent model runs (Fig. 1). To ensure 349 

a reliable distribution fit, it is advisable to feed this module with variables presenting a sampling size of 350 
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at least 30 replicates (e.g. Kar and Ramalingan, 2013). The outcome generated by Module IV after 351 

Plant-Best parameterisation (Section 2.7) is shown in Tables 3 and 4. 352 

 353 

2.6. Module V: Uncertainty filter and plant selector 354 

 355 

Plant-Best implements a series of statistical tools to manage the model uncertainty and 356 

identify the most suitable plant species against shallow landslides. It also performs a sensitivity 357 

analysis (SA) to find relevant plant traits for slope protection.  358 

Firstly, all FoSs derived from all the model runs are pooled together per plant species and per 359 

hydrological event (i.e. wetting and drying). Then, the cumulative distribution (CDF) and probability 360 

density functions (PDF) are plotted for each treatment. Next, a Kolmogorov-Smirnov test (K-S; 361 

Hazewinkel, 2001) is carried out to compare the CDFs statistically and, as a preliminary step for plant 362 

species selection. Subsequently, an uncertainty filter is applied to each evaluated soil depth layer 363 

through the estimation of a reliability index (Malkawi et al., 2000):  364 

 365 

      
             

         
  366 

 367 

where E(FoS[z]) is the bootstrapped mean of the FoS values space for a given soil depth, σ(FoS[z]) is 368 

the bootstrapped standard deviation of the FoS values space for a given soil depth, and 1.0 is the 369 

critical FoS value. Negative RI values (i.e. RI < 0) indicate reduced slope stability conditions. The 370 

statistical differences between the RIs under vegetated and fallow soil covers, and under wetting and 371 

drying conditions, are evaluated with Kruskal-Wallis (i.e. between groups differences) and Wilcoxon 372 

(i.e. within groups differences) tests at the 95 % and 99 % confidence levels. The most suitable plant 373 

species can be finally selected in the light of the obtained RI outcomes.   374 

Eventually, to highlight the most relevant traits for plant selection, the sensitivity of the model 375 

stochastic input variables (Table 1) is studied with the One-At-A-Time approach (Daniel, 1973). This 376 

assess the effect of each stochastic variable on the factor of safety (FoS) after changing each variable 377 

mean value by +20 % and –20 %, respectively, and evaluating the resulting percentages of variation 378 

(PV; Félix and Xanthoulis, 2005).      379 

 380 

2.7. Plant-Best parameterisation  381 

2.7.1 Study site  382 

 383 

Plant-Best was employed on a site with a history of slope failures located adjacent to 384 

Catterline Bay, Aberdeenshire, UK (WGS84 Long: -2.21 Lat: 56.90; Fig. 4), with a mean annual 385 

temperature of 8.9 ºC and a mean annual rainfall of 565.13 mm (Gonzalez-Ollauri and Mickovski, 386 

2016). The site topography is dominated by sloped (25-50º) terrain and cliffs dropping into the North 387 

Sea (Fig. 4). These are combined with a flatter inland area that is crossed by a stream leading to the 388 

formation of inclined riverbanks (Fig. 4). Generally, shallow (ca. 0.6-1.0 m deep) silty sand soils can 389 

be found resting on conglomerate bedrock. The vegetation of the study site is characteristic of 390 

(Eq.1) 
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temperate humid climates, comprising herbaceous weeds and grasses associated to disturbed grounds 391 

(Gonzalez-Ollauri and Mickovski, 2017b) intermixed with areas dominated by riparian trees and 392 

shrubs (e.g. willow, sycamore, ash, hawthorn), where oak and beech individuals can be also found. 393 

Agricultural crops of wheat, barley and potatoes surround the study site.   394 

 395 

Figure 4. Study site location and topography.  396 

 397 

2.7.2 Plant inputs 398 

 399 

Five native plant species were chosen for implementing Plant-Best: three woody - i.e. 400 

sycamore (Acer pseudoplatanus L.), ash (Fraxinus excelsior L.) and willow (Salix sp.); and two 401 

herbaceous species - i.e. red campion (Silene dioica Clariv.) and blue fleabane (Erigeron acris L.). To 402 

obtain the necessary plant inputs for operating Plant-Best (see Table 1), ten adult (i.e. > 10 years for 403 

woody species; apex of the growing season for herbaceous species) individuals of each plant species 404 

were selected for parameterisation. For illustrative purposes, two extra woody species were evaluated – 405 

i.e. beech (Fagus sylvatica L.) and composite oak (Quercus sp.), for which the required inputs were 406 

retrieved from the literature and online databases (e.g. DAAC, DRYAD, Bischetti et al., 2005, Burylo 407 

et al., 2011).  408 

Well-established methods were employed to measure all the required plant inputs (Table 1) 409 

for the selected woody individuals. The leaf area index (LAI) was quantified with the direct method 410 

(Wolf et al., 1972; Breda, 2003). The diameter at breast height (DBH) was measured according to the 411 

existing specifications (Powel, 2005). The canopy-crown area (Ac) was estimated according to the 412 

Spoke’s distance method (Blozan, 2006). Four individuals per species were selected to quantify the 413 

canopy rainfall storage capacity (Sc) and the stemflow coefficients (as and bs). The former was 414 

appraised by collecting and comparing the gross versus the intercepted rainfall below the tree canopy 415 

over time (Gonzalez-Ollauri and Mickovski, 2017c). Stemflow coefficients were estimated by 416 

examining the linear relationship between the concentration of rainfall around the individual stems and 417 

the gross rainfall for different precipitation events (Gonzalez-Ollauri and Mickovski, 2017c). The mean 418 

root tensile strength (Tr; kPa) was measured for each species with a universal tensile testing machine 419 

(Mickovski et al., 2009) using fine root (i.e. diameter < 3.5 mm) samples collected during the 420 

Catterline Bay 

Slopes 

and cliffs 

Scotland 

River 

banks 

N56.89° E-2.21° 

N56.98° E-2.21° 
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vegetative season. Root size selection was done in agreement with SPM limitations –i.e. only small 421 

roots break upon slope failure (Stokes et al., 2008).  422 

For the herbaceous species, LAI, Sc, and Tr were quantified with the same methods indicated 423 

above. The aboveground biomass per unit area (Ma) was measured by harvesting and oven-drying 424 

(70°, 48 h) all the plant material falling within a 0.5 m
2
 aluminium quadrat at 59 different sampling 425 

locations spread over the study site (Gonzalez-Ollauri and Mickovski, 2017b). The allometric 426 

relationship between above and belowground plant biomass (αa and βa; Cheng and Niklas, 2007) was 427 

measured for 20 herbaceous individuals (i.e. 10 per species) by assessing the mathematical relationship 428 

between the dry biomass of both vegetative parts (i.e. shoot + leaves vs. root: Gonzalez-Ollauri and 429 

Mickovski, 2016). The allometric relationship for all the woody species, however, was retrieved from 430 

Cheng and Niklas (2007) for broadleaf temperate species. Eventually, for the two extra evaluated 431 

woody species – i.e. beech and oak, the required inputs were retrieved from the literature and online 432 

databases - i.e. DBH and Ac: Evans et al., 2015 (UK data, DRYAD); LAI: Scurlock et al., 2001 433 

(Temperate Europe data, DAAC); Sc, as and bs: Deguchi et al., 2006 (worldwide broadleaf deciduous 434 

forests); Tr: Bischetti et al. 2005 and Burylo et al., 2011 (Temperate Europe data). The light extinction 435 

coefficient (kc) was assumed to be the same for all plant species, and its range of values was obtained 436 

from Deguchi et al. (2006). The root mass density (ρr), which could have been measured with the 437 

volume displacement method (Hughes, 2005), was assumed to vary randomly between 0.4 and 0.9 g 438 

cm
-3

 for all species, as plant roots are expected to float in water (i.e. roots are less dense than water).   439 

The outcome from the parameterisation of the required plant inputs (Table 1) is shown in 440 

Table 3.  441 

 442 

2.7.3 Soil inputs 443 

 444 

For the parameterisation of the fixed SSVs (Tables 1 and 4), 43 undisturbed soil core samples 445 

from the uppermost 400 mm b.g.l. were collected at random locations distributed over the study site 446 

(Fig. 4). For this, an aluminium core sampler of 95 mm (inner diameter) and 150 mm (height) was 447 

used. Standard methods were employed for determining the soil particle size distribution (PSD: 448 

percentage of sand (Sn), percentage of silt (St) and percentage of clay (Cl); BS 1377-2:1990), porosity 449 

(Φ; Head, 1980) and organic matter content (SOM; Schulte and Hopkins, 1996) at each sampling 450 

location. The soil hydrological properties soil moisture at field capacity (θfc), soil moisture at wilting 451 

point (θwp), soil matric suction of the wetting front (φwf; m) and saturated hydraulic conductivity (Ks; m 452 

s
-1

) were predicted by means of pedotransfer functions (Saxton and Rawls, 2006; Toth et al., 2015) 453 

using the measured SSVs as input.   454 

With regard to the soil stochastic variables (Table 1), the soil mechanical parameters c’ 455 

(effective cohesion) and ϕ’ (angle of internal friction) were obtained by means of direct shear tests (BS 456 

1377-7, 1990; Head and Epps, 2011) carried out on the soil core samples collected from the study site. 457 

The soil hydro-mechanical parameters α (inverse of the air entry pressure) and n (pore size distribution 458 

parameter) were retrieved from soil water characteristic curves (SWCC; van Genuchten, 1980) fitted 459 
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for the drying path onsite (natural soil conditions; Gonzalez-Ollauri and Mickovski, 2017a, 2017c) and 460 

in the laboratory (remoulded soil conditions; Schindler and Muller, 2006).  461 

The outcome from the parameterisation of the soil inputs (Table 1) is shown in Table 4.  462 

 463 

2.7.4 Climate inputs 464 

 465 

Long-term (1996-2014) daily cumulative rainfall information (Pg; mm H2O d
-1

) and climatic 466 

inputs for the estimation of the potential evapotranspiration (Eu; mm H2O d
-1

 m
-2

; Priestly and Taylor, 467 

1972) – i.e. daily air temperature, atmospheric pressure and sunshine duration, were retrieved from the 468 

MIDAS dataset (UK Met Office, 2015; Station: Netherley, UK). The mean rainfall intensity per event 469 

and frequency of rainfall events during the growing season (αc and λc; Preti et al., 2010) were also 470 

retrieved from the abovementioned meteorological records. αc and λc determine, along with a number of 471 

soil features (i.e. water available to plants), the rooting depth of the vegetation for temperate humid 472 

climates (Gonzalez-Ollauri and Mickovski, 2016) and for dry climates (Preti et al., 2010).  473 

The outcome from the parameterisation of the required climate inputs (Table 1) is shown in 474 

Table 4.  475 

 476 

2.8. Plant-Best runs and assumptions 477 

 478 

To test Plant-Best, 50 model runs evaluated on 4837 landslide-prone pixels and at 10 different 479 

soil depths (i.e. every 0.1 m between ground surface and 1.0 m b.g.l., assuming 1.0 m deep isotropic 480 

soil columns) were carried out per plant species and under fallow soil conditions. The fixed SSV were 481 

generated from the selection of the best RF model fit out of 100 possible fits (Appendix C). All the 482 

stochastic model inputs (Tables 1, 3, and 4) were varied one-at-a-time over the study site space per 483 

model run. However, the soil hydro-mechanical parameters (ϕ’, α, and n; Table 1) were allowed to vary 484 

randomly, within the limits established by their statistical distribution (Table 4), over the study site 485 

space in every model run.  486 

To stress the positive or negative effects of vegetation in a landslides context, the height of the 487 

ground water table (Hwt) was fixed at the lower boundary of the system (i.e. 1.0 m) and was not 488 

allowed to vary between runs (i.e. perched water table neglected based on encountered soil type and 489 

observation). The soil cohesion (c’) was set to 0 kPa for all the model runs in order to highlight the 490 

effects provided by the root apparent cohesion (cR). The stemflow coefficients (as and bs; Table 1) were 491 

obtained from the pool of studied individuals, and the same statistical distribution assigned to every 492 

woody species (Table 3). With this, we intended to highlight the effects from other plant traits (e.g. 493 

DBH, Ac; Table 3). Under vegetated cover, the soil pore-size distribution parameter (nv) was forced to 494 

be below or equal to 2 (Carminati et al., 2010), provided that the suction stress function (σ
s
; see 495 

Appendix A), featured within the unified effective stress principle (Lu and Likos, 2004), presents a 496 

minimum at greater values of n (Lu et al., 2010).  497 

 498 
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Table 3. Plant inputs required for operating Plant-Best obtained from the parameterisation process and implementation of Module IV for the stochastic variables. LAI: leaf area index; Ac: 499 
canopy-crown area (m2); DBH: diameter at breast height (cm); αa: allometric power-law parameter; βa: allometric scaling parameter; ρr: root mass density (g cm-3); kc: light extinction 500 
coefficient; Sc: canopy storage capacity (mm m-2); as: stemflow regression line intercept; bs: stemflow regression line slope; Tr: root tensile strength (MPa); Ma: aboveground biomass (g m-2)  501 
Type: S: stochastic; F: fixed. D: statistical distribution; N: normal; LN: lognormal GM: gamma; W: weibull; U: uniform; LG: logistic; B: binomial; Subscripts: t: log-transform; tr: truncated; sc: 502 
scaled between 0 and 1. a and b: statistical distribution fit coefficients; m±sd: mean±standard deviation  503 

Table 3 Continued. Plant inputs required for operating Plant-Best obtained from the parameterisation process and implementing Module IV for the stochastic variables. LAI: leaf area index; Ac: 504 
canopy-crown area (m2); DBH: diameter at breast height (cm); αa: allometric power-law parameter; βa: allometric scaling parameter; ρr: root mass density (g cm-3); kc: light extinction 505 
coefficient; Sc: canopy storage capacity (mm m-2); as: stemflow regression line intercept; bs: stemflow regression line slope; Tr: root tensile strength (MPa); Ma: aboveground biomass (g m-2)   506 
Type: S: stochastic; F: fixed. D: statistical distribution; N: normal; LN: lognormal GM: gamma; W: weibull; U: uniform; LG: logistic; B: binomial; Subscripts: t: log-transform; tr: truncated; sc: 507 
scaled between 0 and 1. a and b: statistical distribution fit coefficients; m±sd: mean±standard deviation.  508 

 509 

  Acer pseudoplatanus Fraxinus excelsior Salix sp. Silene dioica Erigeron acris 

Input Type D a b m±sd D a b m±sd D a b m±sd D a b m±sd D a B m±sd 

LAI S LNt 0.60 0.08 6.26±0.92 GM 3.44 0.70 4.93±2.54 U 1.01 5.57 3.34±1.31 G 1.78 0.42 4.14±3.28 G 1.78 0.42 4.14±3.28 

Ac S Nt 3.40 0.88 46.04±47.94 Nt 3.34 0.84 42.42±42.85 LN 2.33 0.61 12.35±7.66         

DBH S LNt 1.08 0.17 23.74±15.71 GMt 56.24 18.68 22.33±9.57 U 10.66 43.93 27.24±9.63         

αa S Ntr 0.82 0.52 0.82±0.52 Ntr 0.82 0.52 0.82±0.52 Ntr 0.82 0.52 0.82±0.52 N 0.81 0.15 0.81±0.15 N 0.81 0.15 0.81±0.15 

βa S Ntr 4.55 7.29 4.55±7.29 Ntr 4.55 7.29 4.55±7.29 Ntr 4.55 7.29 4.55±7.29 N 7.01 0.25 7.01±0.25 N 7.01 0.25 7.01±0.25 

ρr 

S N 0.65 0.125 0.65±0.125 N 0.65 0.125 0.65±0.125 N 0.65 0.125 0.65±0.125 N 0.65 0.125 0.65±0.125 N 0.65 0.125 0.65±0.125 

kc
 S N 0.60 0.15 0.60±0.15 N 0.60 0.15 0.60±0.15 N 0.60 0.15 0.60±0.15 N 0.60 0.15 0.60±0.15 N 0.60 0.15 0.60±0.15 

Sc F    0.22±0.22    0.26±0.08    0.72±0.36    1.91±0.23    1.91±0.23 

as S Bsc 0.32 0.97  Bsc 0.32 0.97  Bsc 0.32 0.97  Bsc 0.32 0.97  Bsc 0.32 0.97  

bs S LN -4.42 0.84  LN -4.42 0.84  LN -4.42 0.84  LN -4.42 0.84  LN -4.42 0.84  

Tr S LN 2.96 0.75 25.65±20.47 LN 2.96 0.75 25.29±20.59 LN 3.01 0.93 31.00±45.35 LN 3.14 0.67 29.07±25.35 LN 3.00 0.71 25.57±20.44 

Ma S             Wt 8.78 6.47 598.15±465.0 Wt 8.78 6.47 598.15±465.0 

  Fagus sylvatica Quercus sp. 

Input Type D a b m±sd D a b m±sd 

LAI S W 4.16 5.08 4.70±1.27 W 4.30 6.69† 6.45±1.61 

Ac S LGt 3.83 0.50 66.99±80.00 Nt 3.32 1.11 48.72±68.78 

DBH S LNt 1.20 0.17 34.65±24.37 LNt 1.17 0.18 31.61±26.07 

αa S Ntr 0.82 0.52 0.82±0.52 Ntr 0.82 0.52 0.82±0.52 

βa S Ntr 4.55 7.29 4.55±7.29 Ntr 4.55 7.29 4.55±7.29 

ρr N N 0.65 0.125 0.65±0.125 N 0.65 0.125 0.65±0.125 

kc S N 0.6 0.15 0.60±0.15 N 0.6 0.15 0.60±0.15 

Sc S N 0.96 0.35 0.96±0.35 N 0.96 0.35 0.96±0.35 

as S Bsc 0.32 0.97  Bsc 0.32 0.97  

bs S LN -4.42 0.84  LN -4.42 0.84  

Tr S LNt 1.17 0.01 25.07±0.78 LNt 0.92 0.15 13.70±6.20 
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  510 

Table 4. Soil and climate inputs required for operating Plant-Best obtained from the parameterisation process and 511 
implementation of Module IV for the stochastic variables. θi: initial soil moisture; α: inverse air-entry pressure 512 
(kPa-1); n: pore-size distribution parameter; αv: inverse air-entry pressure vegetated soil (kPa-1); nv: pore-size 513 
distribution parameter vegetated soil; c’: effective cohesion (kPa); ϕ’: angle of internal friction (°); Sn: sand 514 
content (%); Cl: clay content (%); SOM: soil organic matter (%;) Φ: soil porosity; θs: soil moisture at saturation; 515 
θfc: soil moisture at field capacity; θwp: soil moisture at wilting point; Ks: saturated hydraulic conductivity (m s-1); 516 
φwf:wetting front hydraulic head (m); Gs: specific gravity; γw: unit weight of water (kPa m-1); Hwt: groundwater 517 
table height (m); Pg: gross rainfall (mm); tr: rainfall duration (h); αc: mean rainfall intensity per event (mm event-518 
1); λc: frequency of rainfall events; Eu: potential daily evapotranspiration rate (mm d-1 m-2). Type: S: stochastic 519 
variable; Fm: fixed variable. D: statistical distribution; N: normal; LN: lognormnal; U: uniform; B: beta; 520 
Subscripts: t: log-transformed; sc: scaled between 0 and 1. a and b: statistical distribution fit coefficients; m±sd: 521 
mean variable value±standard deviation  522 

Compartment Input Type D a b m±sd 

Soil θi S U 0.09 0.7  

 α S U 0.05 0.29 0.17±0.07 

 n S U 1.8 6 3.93±1.24 

 αv S U 0.0065 0.05 0.03±0.01 

 nv S U 1 2 1.51±0.29 

 c’ S LN 3.33 0.57 33.44±22.71 

 ϕ’ S LN 2.98 0.51 22.09±11.55 

 Sn F  74.97±2.47 

 Cl F  1.60±0.12 

 SOM F  5.57±0.65 

 Φ F  0.68±0.02 

 θs F  0.60±0.02 

 θfc F  0.23±0.003 

 θwp F  0.09±0.001 

 Ks F  5.82e-5±1.43e−5 

 φwf F  0.006±0.006 

 Gs F  2.87 

 
γw 

F  9.8 

 Hwt
 F  1.00 

Climate Pg S LN 0.46 1.54 4.94±11.81 

 tr F  24 

 αc S Nt 1.68 0.47 5.92±2.96 

 λc S N 0.62 0.10 0.64±0.02 

 Eu S Bsc 0.77 1.86 1.01±1.01 

 523 

Eventually, the connectivity between the site grid pixels was suppressed (i.e. no lateral flow 524 

and no runoff infiltration occurs between adjacent pixels) as little runoff is expected to infiltrate into 525 

soil columns where ponding is taking place (Mein and Larson, 1973), and as the evaluated time step 526 

(i.e. 24 h; event-based; Table 4) was short enough to prevent the arrival of the wetting front to the 527 

system lower boundary and produce lateral flow (Neitsch et al., 2011). With this assumption the 528 

computational effort was reduced.   529 

   530 
 531 
3. RESULTS  & DISCUSSION 532 

 533 
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3.1. Landslide-prone zones 534 

 535 

Plant-Best successfully identified slope failure prone zones within the study site (Fig. 5a,b). 536 

These zones were detected on the basis of the proximity to water accumulation areas (Fig. 5a), which 537 

are most prone to instability. Most of the landslides detected (Fig. 5c) corresponded to shallow slope 538 

movements on steep terrain, where mainly herbs and grasses comprised the vegetation cover 539 

(Gonzalez-Ollauri and Mickovski, 2017b). However, deeper landslides were also detected (e.g. D in 540 

Fig.5c). The use of topographic attributes (e.g. slope, curvature, aspect) implicit within the framework 541 

(Fig. 2) was proven to be effective for identifying zones subject to slope failure (e.g. Gorokhovich et 542 

al., 2015; Vorpahl et al., 2012), with the added value that the DSM was the only input required (Fig. 2).  543 

The total predicted area subject to slope instability was of 19348 m
2
, and the shallow landslide 544 

susceptibility (P (%) = 100x(landslide area/total area); Cimini et al., 2015) was of 6.72 %. Thus, Plant-545 

Best’s simplified approach was shown to be useful for the preliminary evaluation of the degree of 546 

intervention needed against landslides, or for the identification of priority zones for action. Albeit 547 

landslide susceptibility may seem small for our study area, this should be incorporated within risk 548 

assessment approaches to determine the potential impact produced by landslides (e.g. Mickovski, 549 

2014). The spatial nature of the outcome from Plant-Best’s Module I (Section 2.2) makes it ready to be 550 

employed within landslide risk mapping and assessments (van Westen et al., 2006). Nonetheless, we 551 

recommend carrying out ground validation (e.g. Fig 5c) upon employing Plant-Best for the detection of 552 

landslide-prone zones, as knowledge of the soil physical properties (e.g. c’, ϕ’, PSD, Ks, thickness, 553 

etc.) is crucial for evaluating slope failure hazards (e.g. Lu and Godt, 2013; Schiliro et al., 2016).    554 

 555 

3.2. Plant-species suitability for slope protection 556 

 557 

3.2.1. Cumulative distribution functions (CDFs), probability density functions (PDFs) and 558 

Kolmogorov-Smirnov (K-S) tests 559 

 560 

Plant-Best predicted clear differences between vegetated and fallow soil covers under both 561 

wetting and drying conditions (Figs. 6a-b,c-d). The cumulative distribution functions (CDFs) (Figs. 562 

6a,d) showed that the slope failure likelihood (i.e. FoS<1) was lower for the vegetated than for the 563 

fallow cover in all cases. In particular, this effect was stronger under drying conditions (Fig. 6d), when 564 

the effects of both soil-root mechanical reinforcement and plant transpiration are taking place together. 565 

Differences between fallow and vegetated soil covers were more evidently seen in the probability 566 

density functions (PDFs: Figs. 6b,e). Vegetation PDFs tended to become flatter with respect to the 567 

fallow soil for the higher values of the FoS. This indicates that the slope stability conditions improved 568 

under the vegetation cover, as vegetation provided mechanical and hydrological reinforcement to the 569 

soil (Stokes et al., 2008; Gonzalez-Ollauri and Mickovski, 2017a, 2017c).   570 
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571 
Figure 5. (a) Zones of water accumulation defined on the basis of the cartographic Depth-to-Water (DTW) index. (b) Zones prone of slope failure. (c) Ground validation of selected 

landslide zones. Aerial image: GetMapping (2014).   
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 The outcomes from the CDFs and PDFs (Figs. 6a-b,c-d) indicated that the FoS presented a 572 

statistical lognormal distribution (Haneberg, 2004; Frattini et al., 2009; Arnone et al., 2014) for both 573 

vegetated and fallow soil covers (Table 5). These outcomes stand for statistical or probabilistic models 574 

on their own (Table 5; Haneberg, 2004; Vorpahl et al., 2012) that can be readily applied for predicting 575 

plant-derived slope protection within our study site (e.g. Figs. 8a-h). In addition, the information given 576 

in the CDFs and PDFs could be directly used to make decisions upon which plant species may lead to a 577 

better slope protection performance. However, we believe that the CDFs and PDFs outcomes were not 578 

informative enough to identify the most suitable plant species (i.e. PDF range was quite narrow: 0.3-579 

0.4 around FoS=1) and, hence, we undertook further illustrative steps.  580 

 581 

 582 

 583 

 584 

 585 

The differences between plant species observed in the CDFs and PDFs (Figs. 6a-b,c-d) 586 

became clearer after performing pairwise K-S tests between the obtained CDFs (Figs. 6c,f). The two 587 

species of herbs tested (i.e. Silene dioica and Erigeron acris) stand out with respect to the woody 588 

species and the fallow soil under wetting and drying conditions, respectively. Silene dioica differed the 589 

most from the woody and fallow covers under wetting conditions (D=0.18, p<0.01), while Erigeron 590 

acris presented the greatest differences with respect to the other considered cases under drying 591 

circumstances (D=0.17, p<0.01). This may suggest that herbaceous plants have a better slope 592 

protection performance than woody species. Nonetheless, on the basis of the K-S outcomes alone (Fig. 593 

6c,f) it cannot be concluded whether the observed differences were positive or negative for slope 594 

Figure 6. a-c) Cumulative distribution functions (CDFs), probability density functions (PDFs) and Kolmogorov-

Smirnov (K-S) test outcomes generated by Plant-Best for the different tested plant covers and under wetting 

conditions d-f) Cumulative distribution functions (CDFs), probability density functions (PDFs) and Kolmogorov-

Smirnov (K-S) test outcomes generated by Plant-Best for the different tested plant covers and under drying 

conditions. K-S charts show the K-S index (D) values coming from the CDFs comparison between the considered 

plant covers. 
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protection. Besides, K-S outcomes still carried the uncertainty provided by the randomness of the 595 

Plant-Best inputs (Tables 3 and 4). For this, the estimation of Reliability Indices (RIs; Malkawi et al., 596 

2000) became decisive to further illustrate the previous outcomes, and support an eventual plant 597 

selection. The same applies to the studied woody species, where Fagus sylvatica (D=0.16, p<0.01) and 598 

Salix sp. (D=0.16, p<0.01) differed the most from the fallow soil under wetting (Fig. 6c) and drying 599 

(Fig. 6f) conditions, respectively, in comparison with the other considered woody species. This 600 

suggests, in principle, that the former two woody species have a better slope protection performance.  601 

 602 

Table 5. Statistical distribution fits for the FoS pool per plant species and hydrological event (i.e. wetting drying). 603 
D: statistical distribution; LN: lognormal. a and b: statistical distribution fit coefficients (Standard error range: 604 
0.002-0.003).  605 

Plant-species 
Wetting Drying 

D a b D a b 

Acer pseudoplatanus LN 0.34 0.82 LN 0.40 0.85 

Fraxinus excelsior LN 0.35 0.82 LN 0.40 0.85 

Salix sp. LN 0.34 0.79 LN 0.43 0.84 

Fagus sylvatica LN 0.32 0.83 LN 0.40 0.85 

Quercus sp. LN 0.32 0.81 LN 0.39 0.84 

Silene dioica LN 0.42 0.84 LN 0.45 0.85 

Erigeron acris LN 0.45 0.83 LN 0.45 0.85 

Fallow soil LN 0.19 0.74 LN 0.23 0.73 

 606 

3.2.2. Reliability Indices (RIs) and final plant selection 607 

 608 

The RIs (Figs. 7a-h) revealed highly significant differences (χ
2
=51.08, df=7, p<0.01) between 609 

the tested plant species. In particular, all the studied woody species presented a highly significant 610 

positive (stabilising; RI > 0) effect under drying conditions (χ
2
=41.76, df=1, p<0.01) with respect to 611 

both wetting circumstances and the fallow soil (Figs. 7a-e and 7h). As expected, plant effects were 612 

limited to the topmost soil layers (i.e. root zone; 0-0.4 m b.g.l), confirming that vegetation can be 613 

effective against shallow landslides and erosion (Stokes et al., 2014; Gonzalez-Ollauri and Mickovski, 614 

2016, 2017a, 2017c). Under drying conditions, Salix sp. presented the greatest positive effect (W=57, 615 

p<0.01) with respect to the fallow soil, as indicated before (Fig. 6f).  616 

The herbs and fallow soil covers (Figs. 7f-h), however, did not show differences between 617 

wetting and drying conditions. This is most likely due to the presence of smaller and shallower root 618 

systems (e.g. herbs), or due to their complete absence (e.g. fallow soil). The fact that the RI profiles 619 

(Eq.1) for the herbs (Figs. 7f,g) and fallow soil (Fig. 7h) covers did not show values below 0 under 620 

wetting conditions does not imply that the slopes under these covers were predicted to be always stable 621 

(e.g. see Figs. 6b and 8d-f). The RI profiles (Eq.1, Figs. 7 f-h) were produced as a result of the random 622 

selection of a large proportion of low-intensity rainfall events (see supplementary materials) for the 623 

simulations carried out.  These events did not lead to deep infiltration fronts (i.e. wetting fronts) with 624 

the potential of destabilising the evaluated sloped soils compared to what it could be expected for the 625 

case of heavy rainfall episodes (e.g. 4 mm h
-1

; Gonzalez-Ollauri and Mickovski, 2017c), or compared 626 
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to what it was predicted for the case of the bypass infiltration derived from stemflow (i.e. assumed to 627 

infiltrate the entire soil-root zone) for the woody species (see below). Consequently, FoS values 628 

beyond 1.0 were predicted in the topmost horizons for the fallow and herbaceous soil covers under 629 

wetting conditions for many model runs. Hence, we recommend the combined usage of the different 630 

statistical tools provided within Module V of Plant-Best for a more informed decision on the selection 631 

of the of the most adequate plant species. It is also worth noting that detrimental stability conditions 632 

were predicted for the fallow soil under drying conditions (Figs. 7h and 8f).  The absence of soil 633 

cohesion (c’=0 kPa) assumed herein may be the major cause of this effect (Lu and Godt, 2013).  634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

For the studied woody species (Section 2.7.2), RIs revealed a reduced stability effect (i.e. 652 

RI<0) within the topmost soil horizons under wetting conditions (Figs. 7a-e) in almost all cases. Fagus 653 

sylvatica (Fig. 7d), along with the herbs (Figs. 7f,g), seemed to be more resilient to the negative 654 

response under wetting than the rest of the studied plant species - i.e. under wetting, RI > 0 (Figs. 655 

7d,f,g). The latter suggests that the combination of both types of vegetation covers (i.e. woody and 656 

herbaceous; different plant functional groups) could present an adequate solution for better slope 657 

protection (e.g. Genet et al., 2010). While herbaceous plants will tend to intercept and store more 658 

rainfall (i.e. thick canopy portrayed by the value of Sc; Table 3), woody plants will provide a deeper 659 

and more consistent soil-root mechanical reinforcement (Stokes et al., 2009; Gonzalez-Ollauri and 660 

Mickovski, 2016; Tardio et al., 2016). Deeper root systems are related to higher anchorage needs 661 

(Stokes et al., 2009), which are, in turn, related to a higher aboveground biomass of the woody (Tardio 662 

et al., 2016) with respect to the herbaceous species (Gonzalez-Ollauri and Mickovski, 2016). It is worth 663 

-0.5 0.0 0.5 1.0 1.5

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

Acer pseudoplatanus

Reliability Index

S
o

il 
d

e
p

th
 (

m
)

wetting

drying

soil-root zone

(a)

-0.5 0.0 0.5 1.0 1.5

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

Fraxinus excelsior

Reliability Index

S
o

il 
d

e
p

th
 (

m
)

wetting

drying

soil-root zone

(b)

-0.5 0.0 0.5 1.0 1.5

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

Salix sp.

Reliability Index

S
o

il 
d

e
p

th
 (

m
)

wetting

drying

soil-root zone

(c)

-0.5 0.0 0.5 1.0 1.5

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

Fagus sylvatica

Reliability Index

S
o

il 
d

e
p

th
 (

m
)

wetting

drying

soil-root zone

(d)

-0.5 0.0 0.5 1.0 1.5

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

Quercus sp.

Reliability Index

S
o

il 
d

e
p

th
 (

m
)

wetting

drying

soil-root zone

(e)

-0.5 0.0 0.5 1.0 1.5

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

Silene dioica

Reliability Index

S
o

il 
d

e
p

th
 (

m
)

wetting

drying

soil-root zone

(f)

-0.5 0.0 0.5 1.0 1.5

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

Erigeron acris

Reliability Index

S
o

il 
d

e
p

th
 (

m
)

wetting

drying

soil-root zone

(g)

-0.5 0.0 0.5 1.0 1.5

1
.0

0
.8

0
.6

0
.4

0
.2

0
.0

Fallow soil

Reliability Index

S
o

il 
d

e
p

th
 (

m
)

wetting

drying

(h)

Figure 7. Reliability indices (RIs) for each tested plant cover at different soil depths under wetting and drying 

conditions. a-e: woody plants; e-g: herbaceous plants; h: fallow soil. RI < 0: reduced instability conditions. 

Vertical dashed line crossing at RI=0 marks the boundary between improved and reduced slope stability 

conditions.  
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noting that large structural roots (i.e. diameter > 3.5 mm; structural anchorage roots, sinkers; Stokes et 664 

al., 2009) tend to reinforce the soil mechanically through pull-out and stretching mechanisms 665 

(Mickovski et al., 2009; Ennos, 1990). Indeed, a greater mechanical reinforcement effect would have 666 

been recorded should the contribution of larger woody roots would have been included in Plant-Best 667 

(Section 2.3.2). However, the contribution of these mechanisms tends to be relatively smaller than the 668 

reinforcement provided by the breakage of smaller non-structural roots (Mickovski et al., 2009). For 669 

example, Osman et al. (2011) observed that the pull-out force conferred by entire woody individuals 670 

(1.65-2.25 kN) would be comparable to the tensile force provided by 20 to 30, 1 mm
2
 roots.  671 

Nonetheless, deeper structural root systems will also lower the soil moisture (i.e. soil stress-state 672 

improves) by facilitating drainage within a larger soil zone (Liang et al., 2001; Gonzalez-Ollauri and 673 

Mickovski, 2017c).     674 

Two main reasons, or their combination, could have led to the reduced stability effect (i.e. 675 

RI<0) observed in the RIs (Figs 7a-e) for the woody species under wetting conditions. On the one 676 

hand, Plant-Best highlighted the unfavourable effect derived from stemflow (Fig. 3), which is a unique 677 

and novel feature of Plant-Best. Stemflow, which was only considered for the woody species, was 678 

predicted to concentrate rainwater around the tree stem. This led to the concentration of substantial 679 

water volumes dependent on the tree crown area (Ac; Gonzalez-Ollauri and Mickovski, 2017c), despite 680 

the low intensity rainfall episodes considered for the simulations. This water volumes were assumed to 681 

enter the soil-root zone as a jet (i.e. bypass flow; Liang et al., 2011) without considering the anisotropy 682 

of this soil zone, producing negative effects on the soil stress-state that were not counteracted by the 683 

estimated root mechanical reinforcement (i.e. excluding pull-out and stretching) or by the cohesionless 684 

soil (i.e. c’=0 kPa). Nonetheless, the resilience observed for Fagus sylvatica under wetting conditions 685 

(Fig. 7d) was provided by the mechanical reinforcement of a denser root system that, in turn, was 686 

derived from a higher predicted plant biomass for this species (i.e. higher mean DBH lead to higher 687 

mean Ma and, consequently, higher root biomass; Table 3 cont.). This outcome reveals the importance 688 

of the soil-root mechanical reinforcement under critical hydrological conditions for an effective slope 689 

protection (Gonzalez-Ollauri and Mickovski, 2014). Yet, a denser and more widely spread root system 690 

could be also expected to distribute the stemflow volume over a wider ground area with the subsequent 691 

reduction of the bypass flow rates per unit volume of ground (Liang et al., 2011; Levia and Germer, 692 

2015). Additionally, the Ac (Table 3) may also play a role in mitigating stemflow effects under real 693 

conditions. Albeit the species with a wider crown (Table 3; e.g. Fagus sylvatica) were predicted to 694 

concentrate more rainwater around the stem, broader canopies would have the ability of intercepting 695 

more rainfall (Deguchi et al., 2006) and would also increase the chances of dripfall (i.e. accumulated 696 

rainfall on the tree leaves that eventually falls to the ground; Zimmermann and Zimmermann, 2014). 697 

As a result, the water partitioned as stemflow will likely decrease (Llorens and Domingo, 2007) along 698 

with the unfavourable effect derived from this mechanism. Anyhow, stemflow will likely be more 699 

dependent on the aerial architecture (e.g. stem and branches arrangement; Levia and Germer, 2015; 700 

Yuan et al., 2016) than just the Ac. In addition, the infiltration mechanism induced by stemflow needs 701 

clarification (Liang et al., 2011; Levia and Germer, 2015). 702 
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On the other hand, the higher plant surcharge provided by woody species could have negative 703 

slope stability consequences on steep cohesionless terrain (Lu and Godt, 2013), although this effect is 704 

commonly thought to be negligible (Stokes et al., 2008). The possibility of plant surcharge as an 705 

instability driver seems to have been captured by Plant-Best when the stemflow effect was suppressed 706 

(Fig. 8b) - i.e. there was apparent instability under the woody cover that was not counteracted by the 707 

root mechanical reinforcement, and likely caused by the assumed absence of soil cohesion (Gray and 708 

Megahan, 1981; Lu and Godt, 2013). However, the evaluation of the slope failure likelihood within the 709 

topmost horizons (i.e. 0-0.5 m b.g.l; Figs. 8a-f) revealed that the main instability driver was the 710 

stemflow. This was supported by the consistent improvement of the stability conditions when the 711 

stemflow effect was suppressed (Fig. 8b) with respect to the woody cover with stemflow (Fig. 8a), the 712 

herbaceous cover (e.g. Silene dioica; Fig. 8d) and the fallow soil (Fig. 8e).  713 

 714 

 715 

 716 

 717 

The consistent stabilising effect (i.e. RI >> 0) predicted for the woody cover under drying 718 

conditions (Fig. 8c) is worth being pointed out. This effect was derived from the improvement of the 719 

soil stress-state conditions produced by the combination of soil-root mechanical reinforcement, plant 720 

transpiration and subsequent reduction of the soil moisture, and corroborates previous research (e.g. 721 

Norris et al., 2008; Pollen and Simon, 2010; Gonzalez-Ollauri and Mickovski, 2016, 2017a, 2017c). 722 

Nonetheless, it must be borne in mind that the soil reinforcement derived from plant transpiration will 723 

be a markedly seasonal process in temperate climates, where the atmospheric demand and, thus, plant 724 

transpiration, can be expected to be low during the dormant season (i.e. fall and winter; Wever et al., 725 
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Figure 8. Slope failure likelihood within the topmost soil horizon (i.e. 0-0.5 m) for different plant covers under 

wetting and drying conditions: (a) Fagus sylvatica under wetting conditions (b) Fagus sylvatica under wetting 

conditions excluding stemflow effects (c) Fagus sylvatica under drying conditions (d) Silene dioica under wetting 

conditions (e) Fallow soil under wetting conditions (f) Fallow soil under drying conditions.  
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2002). Consequently, it could be expected that only the mechanical effect provided by the vegetation 726 

will be effective against landslides under low evapotranspiration conditions.  727 

Overall, Plant-Best outcomes indicated that the combination of Fagus sylvatica with the two 728 

tested herbaceous species would lead to a better slope protection performance. Yet, plant species 729 

selection with Plant-Best should be harmonised with the ecological evaluation of candidate species for 730 

a given slope restoration action (e.g. Evette et al., 2012; Jones, 2013). For the ecological evaluation, 731 

aspects such as the origin, life form, growth rate, survival rate, longevity, colonisation requirements or 732 

establishment costs of the candidate species should be considered (Stokes et al., 2014). Plant-Best, 733 

however, will undoubtedly aid in the final species selection, as it has been shown to be effective for 734 

identifying the most geotechnically adequate plant species in a shallow landslides context.    735 

 736 

3.3. Sensitive plant traits for soil protection  737 

 738 

Plant-Best sensitivity analysis results (SA: Figs. 9a, b) highlighted the robustness of the tool - 739 

i.e. PV (percentage of variation) < 20 % (e.g. Jackson et al., 2000). The SA outcomes also illustrated 740 

which plant traits governed the slope protection outputs. These traits were intimately related to the 741 

mechanical and hydrological effects provided by the vegetation on sloped soils. 742 

The most sensitive traits were related to the plant biomass and how this was distributed below 743 

ground. Accordingly, the allometric coefficient αa and the DBH were the most sensitive traits (Figs. 744 

9a,b). αa determined the proportion of belowground biomass respect to the aboveground biomass for a 745 

given plant species (see Appendix A; Cheng and Niklas, 2007; Gonzalez-Ollauri and Mickovski, 746 

2016). As a result, αa governed indirectly the proportion of rooted soil and, thus, the soil-root 747 

mechanical reinforcement. The use of plant allometric coefficients as indicators of plant-derived soil 748 

protection has been suggested before (Gonzalez-Ollauri and Mickovski, 2016). However, their 749 

quantification may be the hardest of all the inputs required by Plant-Best, as they may necessitate 750 

intrusive investigation for their measurement. In this respect, measuring plant allometric relationships 751 

using young saplings might be a more suitable alternative to calibrate this parameter (Zianis and 752 

Mencuccini, 2004). Still, plants may show plasticity in the relative allocation of biomass between the 753 

above and belowground parts (Weiner, 2004) and, hence, allometric changes may occur as a result of 754 

forestry management practices (e.g. coppicing; Vergani et al., 2017). With regard to the DBH, this was 755 

the unique variable that Plant-Best employed for the trees aboveground biomass estimation, provided 756 

that it correlates very well with the tree biomass across many woody species (Zianis et al., 2005). Thus, 757 

the DBH was directly related to the plant surcharge. More importantly and, given the sensitivity of the 758 

allometric relationship between the plants aerial and belowground parts, it becomes evident that the 759 

DBH was one of the most sensitive traits. Therefore, αa and DBH could be employed as proxies for the 760 

estimation of the root biomass, which, in combination with pedoclimatic and root tensile strength 761 

information, could be used to estimate the plant-soil reinforcement (Preti et al., 2010; Gonzalez-Ollauri 762 

and Mickovski, 2016) as the crucial characteristic of soil bioengineering design. However, it should be 763 

noted that Plant-Best did not consider the effect derived from forestry management practices (e.g. 764 

coppicing) on the relative distribution of biomass between the below- and aboveground plant parts or 765 
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against landslides (Vergani et al., 2017). Yet, the open-source nature of Plant-Best code makes the 766 

accommodation of any particular process possible.  767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

 782 

   783 

The crown area (Ac) appeared to be a sensitive trait (Figs 9a, b), too. Ac had an important role 784 

within Plant-Best as a scaling trait for the rainfall interception and stemflow under wetting conditions, 785 

as well as for the plant transpiration upon drying (Gonzalez-Ollauri and Mickovski, 2017c). It should 786 

be borne in mind that stemflow will more likely depend on the tree aerial architecture (e.g. stem and 787 

branches arrangement and morphology; Levia and Germer, 2015) than on the Ac, although further 788 

research on stemflow and its derived effects on slope stability are needed. Thus, and, without 789 

considering further ecological interactions (e.g. shading produced by the canopy; Grime, 1977), tree 790 

individuals with a wider crown should provide a net positive slope stability effect as they will tend to 791 

intercept more rainfall, will distribute the normal load exerted by the plant biomass (i.e. plant 792 

surcharge) over a greater area, and will lead to higher net plant transpiration (Caylor et al., 2005). On 793 

the basis of these observations, the implementation of pruning practices aiding to shape the canopies in 794 

favour of better levels of slope protection could be an interesting possibility to explore. Other sensitive 795 

traits were LAI and nveg, which were shown to be sensitive only under drying conditions. With regard to 796 

nveg, it is worth noting that plant-derived changes on the soil hydro-mechanical properties are difficult 797 

to quantify and are still a major research gap (e.g. Scanlan, 2009; Carminati et al., 2010; Gonzalez-798 

Ollauri and Mickovski, 2017a, 2017c).  799 

It must be borne in mind that Tr was shown to be non-sensitive trait (Fig. 9). This trait is 800 

commonly measured for modelling and estimating the degree of plant-soil mechanical reinforcement 801 

(e.g. Stokes et al., 2008, Mickovski et al 2011). Given that the Tr measures for the tested species (Table 802 

3) fell within the range of values reported in the literature (e.g. Bischetti et al., 2005; Stokes et al., 803 

Figure 9. Plant-Best sensitivity analysis (SA) outcomes expressed in terms of the percentage of variation (PV) 

under wetting and drying conditions. The variables presented here are defined in Table 1. 
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2008; Burylo et al., 2011), we believe that plant selection for slope protection should focus on different 804 

sensitive traits, such as the ones indicated above. 805 

In summary, Plant-Best showed that plants with dense root systems able to confer enough 806 

soil-root mechanical reinforcement, with broad and thick canopies that foster high transpiration rates, 807 

rainfall interception and dripfall opposed to stemflow were shown to be desirable to enhance slope 808 

protection.    809 

 810 

4. CONCLUSION AND FINAL REMARKS 811 

 812 

In the light of the presented outcomes it can be concluded that Plant-Best can be used as a 813 

viable tool for the detection of landslide-prone zones, the selection and evaluation of plant covers for 814 

slope protection and the identification of relevant plant traits related to shallow landslides mitigation. 815 

Plant-Best revealed that different plant species may be suitable for slope protection, depending on the 816 

hydrological conditions – i.e. wetting or drying. This suggests that botanically diverse slopes with 817 

different plant functional groups are desirable for a more effective soil protection. In general and, from 818 

a geotechnical viewpoint, underweight plants with dense root systems and broad thick canopies would 819 

perform best against instability. Yet, upon planning actions on slopes that involve the use of plants, we 820 

recommend using Plant-Best in combination with the ecological characterisation of potential plant 821 

candidates, as slope restoration actions should be carried out in harmony with the environmental 822 

features of a particular slope.   823 

Plant-Best has proved to be a holistic, relatively simple, and robust tool that requires a rather 824 

low number of measurable inputs for its operation (Table 1). These inputs could also be readily 825 

available within online databases (e.g. DAAC, DRYAD, ESDAC, CEDA) and the literature, so one 826 

could easily use Plant-Best under any soil, climate or plant conditions. This is possible due to the 827 

quantifiable nature of all the parameters involved, and due to the open-source code of Plant-Best (see 828 

supplementary materials). For example, users may evaluate the effect of vegetation, or specific 829 

meteorological events, on different lithology by simply changing the input value for the soil particle 830 

size distribution parameters (i.e. sand, clay, silt content). Seasonal and plant age effects could be also 831 

assessed by considering how plant-related parameters vary across seasons (e.g. LAI, Sc) or across 832 

developmental stages (e.g. Ac, DBH, Ma). To acknowledge Plant-Best’s reliability and value, we 833 

encourage its implementation on different and larger sites, under different climatic scenarios, and under 834 

different plant covers using species-tailored inputs. Furthermore, the open-source base of Plant-Best 835 

confers a great versatility to the tool, where new modules and functions (e.g. lateral flow, perched 836 

water tables, soil erosion, coppicing) can be added in and customised depending on the user needs. 837 

Future work will include the inclusion of functions portraying the water flow through the soil 838 

macropores derived from stemflow, as well as thermal processes and energy balances that include the 839 

effects of temperature and sun radiation on the establishment, development and performance of 840 

vegetation against landslides overtime. 841 

Plant-Best applicability includes, but is not limited to, soil loss estimations, soil water balance 842 

assessments, ecosystem services and functions quantification, land-planning, forest management or risk 843 
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assessments at the site and catchment scales. Undoubtedly, Plant-Best is a unique novel tool that opens 844 

up an exciting possibility to shed more light on how vegetation can be used effectively in soil 845 

bioengineering actions.  846 
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Sub-model No Equation Variable Sources 

Stems number Eq.1                Nstems: number of stems  

   LPA: landslide-prone area 

(m
2
) 

 

   mAc: mean tree-crown area 

(m
2
) 

 

Tree biomass Eq.2 Acer pseudoplatanus:                      Ma: aboveground biomass 

(kg tree
-1

) 

Zianis et al. 

(2005) 

 Eq.3 Fraxinus excelsior:                       DBH: diameter at breast 

height (cm) 

Zianis et al. 

(2005) 

 Eq.4 Salix sp.:                

                        

                        

                                      

Mbr: branch biomass (kg 

tree
-1

) 

Mfl: foliage biomass (kg 

tree
-1

) 

Mst: stem biomass (kg tree
-

1
) 

Mukkonen and 

Makipaa (2006) 

 Eq.5 Fagus sylvatica:                 Zianis et al. 

(2005) 

 Eq.6 Quercus sp.:                             Zianis et al. 

(2005) 

 Eq.7 Betula sp:                        Zianis et al. 

(2005) 

 Eq.8           Mr: belowground biomass 

(kg tree
-1

) 

Cheng and 

Niklas (2007) 

   βa: allometric coefficient  

   αa: allometric exponent  

Root spread Eq.9                     Ar: root cross-sectional 

area (mm
2
) 

Preti et al. 

(2010) 
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Sub-model No Equation Variable Sources 

Root spread Eq.10            Aro: root cross-sectional 

area at ground surface 

(mm
2
) 

 

 Eq.11 Temperate humid climate:                  b: mean rooting depth 

(mm) 

Gonzalez-

Ollauri and 

Mickovski 

(2016) 

 Eq.12 Dry climate:                     
    

   
   z: soil depth (mm) Laio et al. 

(2006) 

   αc: mean rainfall intensity 

during growing season (mm 

H2O event
-1

) 

 

   n: soil porosity   

   θfc: volumetric moisture 

content at field capacity  

 

   θwp: volumetric moisture 

content at wilting point  

 

   λo: rainfall frequency 

during growing season 

 

   Etp: mean daily 

evapotranspiration rate 

during growing season (mm 

H2O day
-1

) 

 

 Eq.13                 RAR: root area ratio This study 

   Px: pixel resolution (mm
2
)  

Rainfall 

interception 

Eq.14                ER: effective rainfall (mm 

H2O) 

This study 
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Sub-model No Equation Variable Sources 

Rainfall 

interception 

Eq.15                  Pg: gross rainfall (mm 

H2O) 

Maass et al. 

(1995) 

   S: canopy storage capacity 

(mm H2O m
-2

) 

 

   c: canopy cover fraction   

   Ac’: canopy covered 

ground area (i.e. pixel 

resolution) (m
2
) 

 

   kc: light extinction 

coefficient  

 

   LAI: leaf area index  

Stemflow Eq.16                 Stv: stemflow volume (L 

stem
-1

) Gonzalez-Ollauri 

and Mickovski 

(2017) 

 Eq. 17              as: regression intercept  

   bs: regression slope   

   Ac: tree-crown area (m
2
)  

Infiltration Eq.18       F(tp): cumulative 

infiltration at ponding (m 

H2O)  

This study 

 Eq.19                           φwf: matric potential of the 

wetting front 

Mein and Larson 

(1973) 

 Eq.20                    

 Eq.21        Ks: saturated hydraulic 

conductivity (m h
-1

) 

 

 Eq.22                   θs: volumetric moisture 

content at saturation 

 

 Eq.23                 θi: initial volumetric  
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moisture content  

Sub-model No Equation Variable Sources 

Infiltration Eq.24                P: rainfall intensity (m H2O 

h
-1

) 

 

   Zp: ponding depth (m)  

   tr: rainfall duration (h)  

   RNF: runoff (m H2O)  

   AI: actual infiltration (m 

H2O) 

 

   Zwf: wetting front depth (m)  

Percolation Eq.25            Vsat: volume of saturated 

soil (m
3
) 

 

 Eq.26               Px: pixel resolution (m
2
)  

 Eq.27           Vw.sat: water volume 

within saturated zone (m
3
) 

 

 Eq.28                       Vfc: water volume at field 

capacity (m
3
) 

 

 Eq.29                    Vper: percolation water 

volume (L m
-2

 or mm H2O) 

Neitsch et al. 

(2011) 

 Eq.30 
                         

     

     
  

tperc: percolation time (h)  

 Eq.31                   qperc: percolation rate (m 

H2O h
-1

) 

 

 Eq.32                         ) tstep: time step (i.e. 24 h)  

 Eq.33                                  Vunsat: unsaturated soil 

volume (m
3
) 

 

 Eq.34                          Zb: system’s lower 

boundary depth (m) 
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 Eq.35 
        

  

  
 

 

 
Vw.unsat.i: initial water 

volume unsaturated zone  

Brooks and 

Corey (1964) 

Sub-model No Equation Variable Sources 

Percolation     

 Eq.36                 Vw.unsat.f: final water 

volume within unsaturated 

zone after percolation (L) 

 

 Eq.37               θf: final moisture content 

after percolation  

 

   K(θ): hydraulic 

conductivity function (m h
-

1
) 

 

   Zperc: percolation travel 

depth (m) 

 

     

Evapotranspiration Eq.38                      Esp: soil evaporation (mm 

H2O d
-1

) 

Savabi and 

Williams (1995) 

 Eq.39                                 Eu: potential 

evapotranspiration (mm 

H2O d
-1 

m
-2

) 

 

 Eq.40 
       

   

    
      

DEsp: potential depth for 

soil evaporation (m) 

 

   Cl: percentage of clay (%)  

   Sa: percentage of sand (%)  

   Etp: plant transpiration 

(mm H2O d
-1

) 

 

 

Soil stress-state Eq.41 
               

  

 
       

  

  
            

  

  
  

ua-uw: soil matric suction 

(kPa) 

Lu and Griffiths 

(2006) 
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 Eq.42 
              

 

 
       

  

    
            

  

    
  

α: inverse of the air entry 

pressure (kPa
-1

) 

This study 

Sub-model No Equation Variable Sources 

Soil stress-state Eq.43 
                        

   
  

qw: flow rate upon wetting 

(m H2O s
-1

) 

Lu et al. (2010) 

   γw: unit weight of water 

(kPa m
-1

) 

 

 Eq. 44                        z: soil depth respect to the 

system’s lower boundary 

(m) 

 

   qd: flow rate upon drying 

(m H2O s
-1

) 

 

   σ
s
: suction stress (-kPa)  

   n: pore size distribution 

parameter 

 

   σ: normal stress (kPa)  

   c’: effective cohesion (kPa)  

   ϕ’: angle of internal friction 

(°) 

 

   τ: soil shear strength 

(kPa)Eq. 46 

 

Root mechanical 

reinforcement 

Eq.45                     CR: root apparent cohesion 

(kPa) 

Wu et al. (1979) 

   cf: correction factor  

   Tr: mean root tensile 

strength (kPa) 

 

Vegetation 

surcharge 

Eq.46 
    

     

  
   

Wv: vegetation weight (N 

m
-2

) 

This study 

   g: gravitational ac. (m s
-2

)  
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Sub-model No Equation Variable Sources 

Slope stability Eq.47 
       

                          

            
 

σ: normal stress (kPa) Lu and Godt 

(2008) 

 Eq.48                          β: slope gradient (º)  

 Eq.49                     γs: soil unit weight (N m
-3

)  

 Eq.50          Hwt: system’s lower 

boundary depth (i.e. water 

table height) (m)  

This study 

   z: soil depth (m)  

   Gs: soil specific gravity  

   e: voids ratio  

   Se: effective degree of 

saturation 

 

Pedotransfer 

functions 

Eq.51                  
      0.0016Cl

2
+3.81Φ+0.000034SaCl-0.0498SaΦ-

0.0000136Sa
2
Cl-0.003479Cl

2
Φ-0.000799Sa

2
Cl) 

Φ: soil porosity Neitsch et al. 

(2011) 

 Eq.52                  
                   Saxton and 

Rawls (2006) 

 Eq.53                                       
                           

  

 Eq.54                              

 Eq.55                                         
                           

  

 Eq.56 
   

            

             
    

  

 Eq.57                        

 1108 
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Sub-model Assumptions 

Stem number Trees in adult state 

Root spread Root system follows a negative exponential decrease with soil depth 

 Steady-sate mature vegetation 

 Water is the limiting resource 

 Isotropic soil conditions 

 Belowground biomass estimated with allometric model 

Rainfall interception Rainfall occurs as a series of discrete events 

 Litter interception negligible 

 All throughfall is eligible to infiltrate into the soil 

 Dripfall is pooled within the throughfall estimate 

Stemflow All the tree crown collects water for stemflow 

Infiltration Isotropic soil 

 Soil moisture is uniformly distributed throughout the soil profile 

 Rainfall is steady 

 Wetting front saturates the soil behind 

 Wetting front is at constant head 

 If ponding does not form, all rainfall infiltrates 

 Wetting front stops when rain ceases 

 After ponding, infiltration rate approaches Ks 

 In principle, all rainfall is eligible to infiltrate 

 All non-infiltrated rainfall runoffs  

 Runoff does not infiltrate elsewhere (i.e. exists the system) 

Percolation Instantaneous percolation once rain stops 

 Lateral and preferential flow neglected 

 Percolation occurs as a piston flow 

 Isotropic soil 

 Uniform moisture content below the wetting front  

 Excess water is all the volume exceeding field capacity 

 All excess water percolates 

 Steady percolation rate 

 Travel distance approximated with HCF (Eq. 38) at the final 

moisture content 

 Beyond percolation front, hydrostatic conditions hold 

Evapotranspiration Assumptions from Priestly and Taylor (1972) apply 

 Same transpiration rate within the root zone 

 Soil evaporation is limited to a depth determined by the soil type 

Soil stress-state Isotropic soil 

 Steady-state infiltration, percolation and evapotranspiration 

 If matric suction is below or equal to 0, saturated conditions hold 
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Sub-model Assumptions 

 Under saturated conditions, suction stress is equal to 0 

 Soil hysteresis neglected 

 Pore-size distribution parameter changes when soil is vegetated (i.e. 

n < 2) 

Root mechanical 

reinforcement 

Roots perpendicular to the shear plane 

 At failure all roots break 

 Only fine roots (i.e. smaller than 3.5 mm in diameter) are considered 

Vegetation surcharge Above and belowground biomass surcharge is considered together 

Slope stability Infinite slope 

 Isotropic soil 

 Slope is at its limit equilibrium  

 Water table is the lowest boundary and it is static 

 Hydrological steady-state conditions 

 Effective degree of saturation calculation is simplified 
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Table C.1. Soil spatial variables (SSVs) prediction outcomes obtained from implementing RF algorithms. R2: 

coefficient of determination; RMSE: residual mean square error. The rest of the cells show the variable importance 

(%) for the prediction of a given SSV. Sn: sand content; St: silt content; Cl: clay content; SOM: soil organic 

matter; Φ: soil porosity.   

SSV R2 RMSE VE (%) Slope Aspect Curvature Land 

Cover 

Sn Cl OM 

Sn 0.86 16.14 43.8 19.41 5.68 -7.01 29.69    

St 0.96 67.17 74.13 12.48 3.83 -1.60 10.62 41.98   

Cl 0.97 63.01 82.34 17.81 8.83 -0.04 15.48 39.14   

SOM 0.83 61.01 48.07 8.18 -1.54 0.71 24.059 17.10 13.23  

Φ 0.96 61.07 87.07 6.08 2.02 -3.86 10.28 19.78 17.83 19.50 

 

 


