3,771 research outputs found

    Areal Foliation and AVTD Behavior in T^2 Symmetric Spacetimes with Positive Cosmological Constant

    Full text link
    We prove a global foliation result, using areal time, for T^2 symmetric spacetimes with a positive cosmological constant. We then find a class of solutions that exhibit AVTD behavior near the singularity.Comment: 15 pages, 0 figures, 2 references adde

    Thermospheric density perturbations in response to substorms

    Get PDF
    We use 5 years (2001–2005) of CHAMP (Challenging Minisatellite Payload) satellite data to study average spatial and temporal mass density perturbations caused by magnetospheric substorms in the thermosphere. Using statistics from 2306 substorms to construct superposed epoch time series, we find that the largest average increase in mass density of about 6% occurs about 90 min after substorm expansion phase onset about 3 h of magnetic local time east of the onset region. Averaged over the entire polar auroral region, a mass density increase of about 4% is observed. Using a simple model to estimate the mass density increase at the satellite altitude, we find that an energy deposition rate of 30 GW applied for half an hour predominantly at an altitude of 110 km is able to produce mass density enhancements of the same magnitude. When taking into account previous work that has shown that 80% of the total energy input is due to Joule heating, i.e., enhanced electric fields, whereas 20% is due to precipitation of mainly electrons, our results suggest that the average substorm deposits about 6 GW in the polar thermosphere through particle precipitation. Our result is in good agreement with simultaneous measurements of the NOAA Polar-orbiting Operational Environmental Satellite (POES) Hemispheric Power Index; however, it is about 1 order of magnitude less than reported previously

    Cluster spacecraft observations of a ULF wave enhanced by Space Plasma Exploration by Active Radar (SPEAR)

    Get PDF
    Space Plasma Exploration by Active Radar (SPEAR) is a high-latitude ionospheric heating facility capable of exciting ULF waves on local magnetic field lines. We examine an interval from 1 February 2006 when SPEAR was transmitting a 1 Hz modulation signal with a 10 min on-off cycle. Ground magnetometer data indicated that SPEAR modulated currents in the local ionosphere at 1 Hz, and enhanced a natural field line resonance with a 10 min period. During this interval the Cluster spacecraft passed over the heater site. Signatures of the SPEAR-enhanced field line resonance were present in the magnetic field data measured by the magnetometer on-board Cluster-2. These are the first joint ground- and space-based detections of field line tagging by SPEAR

    Entanglement purification of multi-mode quantum states

    Get PDF
    An iterative random procedure is considered allowing an entanglement purification of a class of multi-mode quantum states. In certain cases, a complete purification may be achieved using only a single signal state preparation. A physical implementation based on beam splitter arrays and non-linear elements is suggested. The influence of loss is analyzed in the example of a purification of entangled N-mode coherent states.Comment: 6 pages, 3 eps-figures, using revtex

    Absolute dimensions of eclipsing binaries. XXVIII. BK Pegasi and other F-type binaries: Prospects for calibration of convective core overshoot

    Full text link
    We present a detailed study of the F-type detached eclipsing binary BK Peg, based on new photometric and spectroscopic observations. The two components, which have evolved to the upper half of the main-sequence band, are quite different with masses and radii of (1.414 +/- 0.007 Msun, 1.988 +/- 0.008 Rsun) and (1.257 +/- 0.005 Msun, 1.474 +/- 0.017 Rsun), respectively. The 5.49 day period orbit of BK Peg is slightly eccentric (e = 0.053). The measured rotational velocities are 16.6 +/- 0.2 (primary) and 13.4 +/- 0.2 (secondary) km/s. For the secondary component this corresponds to (pseudo)synchronous rotation, whereas the primary component seems to rotate at a slightly lower rate. We derive an iron abundance of [Fe/H] =-0.12 +/- 0.07 and similar abundances for Si, Ca, Sc, Ti, Cr and Ni. Yonsei-Yale and Victoria-Regina evolutionary models for the observed metal abundance reproduce BK Peg at ages of 2.75 and 2.50 Gyr, respectively, but tend to predict a lower age for the more massive primary component than for the secondary. We find the same age trend for three other upper main-sequence systems in a sample of well studied eclipsing binaries with components in the 1.15-1.70 Msun range, where convective core overshoot is gradually ramped up in the models. We also find that the Yonsei-Yale models systematically predict higher ages than the Victoria-Regina models. The sample includes BW Aqr, and as a supplement we have determined a [Fe/H] abundance of -0.07 +/- 0.11 for this late F-type binary. We propose to use BK Peg, BW Aqr, and other well-studied 1.15-1.70 Msun eclipsing binaries to fine-tune convective core overshoot, diffusion, and possibly other ingredients of modern theoretical evolutionary models.Comment: Accepted for publication in Astronomy and Astrophysic

    Upper bounds on success probabilities in linear optics

    Full text link
    We develop an abstract way of defining linear-optics networks designed to perform quantum information tasks such as quantum gates. We will be mainly concerned with the nonlinear sign shift gate, but it will become obvious that all other gates can be treated in a similar manner. The abstract scheme is extremely well suited for analytical as well as numerical investigations since it reduces the number of parameters for a general setting. With that we show numerically and partially analytically for a wide class of states that the success probability of generating a nonlinear sign shift gate does not exceed 1/4 which to our knowledge is the strongest bound to date.Comment: 8 pages, typeset using RevTex4, 5 EPS figure

    Quantifying non-Gaussianity for quantum information

    Get PDF
    We address the quantification of non-Gaussianity of states and operations in continuous-variable systems and its use in quantum information. We start by illustrating in details the properties and the relationships of two recently proposed measures of non-Gaussianity based on the Hilbert-Schmidt (HS) distance and the quantum relative entropy (QRE) between the state under examination and a reference Gaussian state. We then evaluate the non-Gaussianities of several families of non-Gaussian quantum states and show that the two measures have the same basic properties and also share the same qualitative behaviour on most of the examples taken into account. However, we also show that they introduce a different relation of order, i.e. they are not strictly monotone each other. We exploit the non-Gaussianity measures for states in order to introduce a measure of non-Gaussianity for quantum operations, to assess Gaussification and de-Gaussification protocols, and to investigate in details the role played by non-Gaussianity in entanglement distillation protocols. Besides, we exploit the QRE-based non-Gaussianity measure to provide new insight on the extremality of Gaussian states for some entropic quantities such as conditional entropy, mutual information and the Holevo bound. We also deal with parameter estimation and present a theorem connecting the QRE nonG to the quantum Fisher information. Finally, since evaluation of the QRE nonG measure requires the knowledge of the full density matrix, we derive some {\em experimentally friendly} lower bounds to nonG for some class of states and by considering the possibility to perform on the states only certain efficient or inefficient measurements.Comment: 22 pages, 13 figures, comments welcome. v2: typos corrected and references added. v3: minor corrections (more similar to published version

    Eclipsing Binaries in Open Clusters

    Get PDF
    Detached eclipsing binaries are very useful objects for calibrating theoretical stellar models and checking their predictions. Detached eclipsing binaries in open clusters are particularly important because of the additional constraints on their age and chemical composition from their membership of the cluster. I compile a list containing absolute parameters of well-studied eclipsing binaries in open clusters, and present new observational data on the B-type systems V1481 Cyg and V2263 Cyg which are members of the young open cluster NGC 7128.Comment: 4 pages, 2 colour figures. Poster presentation for IAUS 240 (Binary Stars as Critical Tools and Tests in Contemporary Astrophysics), Prague, August 2006. The poster itself can be dowloaded in ppt and pdf versions from http://www.astro.keele.ac.uk/~jkt/pubs.htm
    corecore