173 research outputs found

    The Langevin diffusion as a continuous-time model of animal movement and habitat selection

    Get PDF
    TM was supported by the Centre for Advanced Biological Modelling at the University of Sheffield, funded by the Leverhulme Trust, award number DS-2014-081.1. The utilisation distribution of an animal describes the relative probability of space use. It is natural to think of it as the long-term consequence of the animal's short-term movement decisions: it is the accumulation of small displacements which, over time, gives rise to global patterns of space use. However, many estimation methods for the utilisation distribution either assume the independence of observed locations and ignore the underlying movement (e.g. kernel density estimation), or are based on simple Brownian motion movement rules (e.g. Brownian bridges). 2. We introduce a new continuous-time model of animal movement, based on the Langevin diffusion. This stochastic process has an explicit stationary distribution, conceptually analogous to the idea of the utilisation distribution, and thus provides an intuitive framework to integrate movement and space use. We model the stationary (utilisation) distribution with a resource selection function to link the movement to spatial covariates, and allow inference about habitat preferences of animals. 3. Standard approximation techniques can be used to derive the pseudo-likelihood of the Langevin diffusion movement model, and to estimate habitat preference and movement parameters from tracking data. We investigate the performance of the method on simulated data, and discuss its sensitivity to the time scale of the sampling. We present an example of its application to tracking data of Steller sea lions (Eumetopias jubatus). 4. Due to its continuous-time formulation, this method can be applied to irregular telemetry data. The movement model is specified using a habitat-dependent utilisation distribution, and it provides a rigorous framework to estimate long-term habitat selection from correlated movement data. The Langevin movement model can be approximated by linear model, which allows for very fast inference. Standard tools such as residuals can be used for model checking.PostprintPeer reviewe

    Continuous time resource selection analysis for moving animals

    Get PDF
    1.Resource selection analysis (RSA) seeks to understand how spatial abundance covaries with environmental features. By combining RSA with movement, step selection analysis (SSA) has helped uncover the mechanisms behind animal relocations, thereby giving insight into the movement decisions underlying spatial patterns. However, SSA typically assumes that at each observed location, an animal makes a 'selection' of the next observed location. This conflates observation with behavioural mechanism and does not account for decisions occurring at any other time along the animal's path. 2.To address this, we introduce a continuous time framework for resource selection. It is based on a switching Ornstein‐Uhlenbeck (OU) model, parameterised by Bayesian Monte Carlo techniques. Such OU models have been used successfully to identify switches in movement behaviour, but hitherto not combined with resource selection. We test our inference procedure on simulated paths, representing both migratory movement (where landscape quality varies according to season) and foraging with depletion and renewal of resources (where the variation is due to past locations of the animals). We apply our framework to location data of migrating mule deer (Odocoileus hemionus) to shed light on the drivers of migratory decisions. 3.In a wide variety of simulated situations, our inference procedure returns reliable estimations of the parameter values, including the extent to which animals trade‐off resource quality and travel distance (within 95% posterior intervals for the vast majority of cases). When applied to the mule deer data, our model reveals some individual variation in parameter values. Nevertheless, the migratory decisions of most individuals are well‐described by a model that accounts for the cost of moving and the difference between instantaneous change of vegetation quality at source and target patches. 4.We have introduced a technique for inferring the resource‐driven decisions behind animal movement that accounts for the fact that these decisions may take place at any point along a path, not just when the animal's location is known. This removes an oft‐acknowledged but hitherto little‐addressed shortcoming of stepwise movement models. Our work is of key importance in understanding how environmental features drive movement decisions and, as a consequence, space use patterns

    Understanding decision making in a food-caching predator using hidden Markov models

    Get PDF
    Financial support was provided by the People’s Trust for Endangered Species (PTES), Zoologische Gesellschaft für Arten- und Populationsschutz (ZGAP), Quagga Conservation Fund and IdeaWild.Background Tackling behavioural questions often requires identifying points in space and time where animals make decisions and linking these to environmental variables. State-space modeling is useful for analysing movement trajectories, particularly with hidden Markov models (HMM). Yet importantly, the ontogeny of underlying (unobservable) behavioural states revealed by the HMMs has rarely been verified in the field. Methods Using hidden Markov models of individual movement from animal location, biotelemetry, and environmental data, we explored multistate behaviour and the effect of associated intrinsic and extrinsic drivers across life stages. We also decomposed the activity budgets of different movement states at two general and caching phases. The latter - defined as the period following a kill which likely involves the caching of uneaten prey - was subsequently confirmed by field inspections. We applied this method to GPS relocation data of a caching predator, Persian leopard Panthera pardus saxicolor in northeastern Iran. Results Multistate modeling provided strong evidence for an effect of life stage on the behavioural states and their associated time budget. Although environmental covariates (ambient temperature and diel period) and ecological outcomes (predation) affected behavioural states in non-resident leopards, the response in resident leopards was not clear, except that temporal patterns were consistent with a crepuscular and nocturnal movement pattern. Resident leopards adopt an energetically more costly mobile behaviour for most of their time while non-residents shift their behavioural states from high energetic expenditure states to energetically less costly encamped behaviour for most of their time, which is likely to be a risk avoidance strategy against conspecifics or humans. Conclusions This study demonstrates that plasticity in predator behaviour depending on life stage may tackle a trade-off between successful predation and avoiding the risks associated with conspecifics, human presence and maintaining home range. Range residency in territorial predators is energetically demanding and can outweigh the predator’s response to intrinsic and extrinsic variables such as thermoregulation or foraging needs. Our approach provides an insight into spatial behavior and decision making of leopards, and other large felids in rugged landscapes through the application of the HMMs in movement ecology.Publisher PDFPeer reviewe

    Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array

    Get PDF
    Metazoan cells harness the power of actin dynamics to create cytoskeletal arrays that stimulate protrusions and drive intracellular organelle movements. In plant cells, the actin cytoskeleton is understood to participate in cell elongation; however, a detailed description and molecular mechanism(s) underpinning filament nucleation, growth, and turnover are lacking. Here, we use variable-angle epifluorescence microscopy (VAEM) to examine the organization and dynamics of the cortical cytoskeleton in growing and nongrowing epidermal cells. One population of filaments in the cortical array, which most likely represent single actin filaments, is randomly oriented and highly dynamic. These filaments grow at rates of 1.7 µm/s, but are generally short-lived. Instead of depolymerization at their ends, actin filaments are disassembled by severing activity. Remodeling of the cortical actin array also features filament buckling and straightening events. These observations indicate a mechanism inconsistent with treadmilling. Instead, cortical actin filament dynamics resemble the stochastic dynamics of an in vitro biomimetic system for actin assembly

    Rheological Characterization of the Bundling Transition in F-Actin Solutions Induced by Methylcellulose

    Get PDF
    In many in vitro experiments Brownian motion hampers quantitative data analysis. Therefore, additives are widely used to increase the solvent viscosity. For this purpose, methylcellulose (MC) has been proven highly effective as already small concentrations can significantly slow down diffusive processes. Beside this advantage, it has already been reported that high MC concentrations can alter the microstructure of polymer solutions such as filamentous actin. However, it remains to be shown to what extent the mechanical properties of a composite actin/MC gel depend on the MC concentration. In particular, significant alterations might occur even if the microstructure seems unaffected. Indeed, we find that the viscoelastic response of entangled F-actin solutions depends sensitively on the amount of MC added. At concentrations higher than 0.2% (w/v) MC, actin filaments are reorganized into bundles which drastically changes the viscoelastic response. At small MC concentrations the impact of MC is more subtle: the two constituents, actin and MC, contribute in an additive way to the mechanical response of the composite material. As a consequence, the effect of methylcellulose on actin solutions has to be considered very carefully when MC is used in biochemical experiments

    General models in min-max continous location

    Get PDF
    In this paper, a class of min-max continuous location problems is discussed. After giving a complete characterization of th stationary points, we propose a simple central and deep-cut ellipsoid algorithm to solve these problems for the quasiconvex case. Moreover, an elementary convergence proof of this algorithm and some computational results are presented

    Theoretically nanoscale study on ionization of muscimol nano drug in aqueous solution

    Get PDF
    In the present work, acid dissociation constant (pKa) values of muscimol derivatives were calculated using the Density Functional Theory (DFT) method. In this regard, free energy values of neutral, protonated and deprotonated species of muscimol were calculated in water at the B3LYP/6-31G(d) basis sets. The hydrogen bond formation of all species had been analyzed using the Tomasi's method. It was revealed that the theoretically calculated pKa values were in a good agreement with the existing experimental pKa values, which were determined from capillary electrophoresis, potentiometric titration and UV-visible spectrophotometric measurements

    Model of For3p-Mediated Actin Cable Assembly in Fission Yeast

    Get PDF
    Formin For3p nucleates actin cables at the tips of fission yeast cells for polarized cell growth. The results of prior experiments have suggested a possible mechanism for actin cable assembly that involves association of For3p near cell tips, For3p-mediated actin polymerization, retrograde flow of actin cables toward the cell center, For3p dissociation from cell tips, and cable disassembly. We used analytical and computational modeling to test the validity and implications of the proposed coupled For3p/actin mechanism. We compared the model to prior experiments quantitatively and generated predictions for the expected behavior of the actin cable system upon changes of parameter values. We found that the model generates stable steady states with realistic values of rate constants and actin and For3p concentrations. Comparison of our results to previous experiments monitoring the FRAP of For3p-3GFP and the response of actin cables to treatments with actin depolymerizing drugs provided further support for the model. We identified the set of parameter values that produces results in agreement with experimental observations. We discuss future experiments that will help test the model's predictions and eliminate other possible mechanisms. The results of the model suggest that flow of actin cables may establish actin and For3p concentration gradients in the cytoplasm that could be important in global cell patterning
    corecore