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General Models in Min-Max Continuous Location: 
Theory and Solution Techniques 

J. B. G. F R E N K ,  3 J .  G R O M I C H O ,  4 A N D  S. Z H A N G  5 

Communicated by S. Schaible 

Abstract. In this paper, a class of min-max continuous location prob- 
lems is discussed. After giving a complete characterization of the station- 
ary points, we propose a simple central and deep-cut ellipsoid algorithm 
to solve these problems for the quasiconvex case. Moreover, an elemen- 
tary convergence proof of this algorithm and some computational results 
are presented. 
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1. Introduction 

Let  @ : = { d l , . . .  ,dn}_~R s, s > 2 ,  denote  a set o f  n different d e m a n d  
points,  and  let x e ~  s be the locat ion o f  a facility to be chosen.  I f  fgi, i =  
1 . . . . .  n, are c o m p a c t  convex sets with 0~int(ff,-) and int(fgi) denot ing the 
interior  o f  f#;, we define the distance between x and  di by ? , i ( x -d~) ,  with 
7/~, the gauge or  M i n k o w s k y  funct ional  (Refs. 1 and  2) o f  the set f#,., i.e., 

7/~,(x) := inf{ t > 0: x �9 tf~i}. (1) 

I f  f9,- is symmetr ic  a round  O, the cor responding  gauge is called a norm.  The  
mot ive  to consider  cont inuous  locat ion p rob lems  with a rb i t ra ry  gauges is 
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twofold. First of all, although most papers discuss only continuous location 
models with rectangular, Euclidean, or Tchebycheff norms, it is known that 
an/p-norm (withp not equal to 1, 2, or ~ )  or a general polyhedral or block 
norm (Refs. 3 and 4) sometimes fits better the empirical data (Refs. 4-7). 
This implies that it might be sensible to consider arbitrary norms within 
location models. Secondly, it is sometimes unrealistic to assume, as imposed 
by a norm, that the distance is symmetric (Ref. 8). Hence, to model this 
asymmetric behavior of distances (i.e., the distance between x and y is not 
the same as the distance between y and x), we need to consider arbitrary 
gauges. Although a gauge seems to be an intractable distance function, it 
turns out that the analysis of location models with gauges is relatively simple 
due to the convexity properties of gauges. In particular, a gauge y~r of a 
compact convex set ~ with 0~int(~#) is a positively homogeneous, nonnega- 
tive finite-valued convex function (Refs. 2 and 9). It should be clear from 
the above observations that the selection of a distance function is central in 
all continuous location problems, and this topic is intensively discussed in 
an excellent recent survey paper by Plastria (Ref. 10). To conclude our 
discussion of how to measure distance, we observe that the Euclidean, rectan- 
gular, or Tchebycheff norms were used mostly to obtain easy tractable non- 
linear/linear programming problems (Ref. 1 1). However in this paper, we 
present a simple deep-cut version of the ellipsoid algorithm which can handle 
efficiently a large subclass of the general single-facility location model with 
gauges. To introduce the model, let the function y'  ~s_..,~ be given by 

~,(x) := (?'~a(x- dl) . . . . .  yv , (x -  d,)), (2) 

and suppose that f~: R " ~ + ,  l<i<n,  denote a set of nondecreasing 
functions on R~_ associated with the demand points. We also assume that 

n ~  the functionsf, are differentiable on an open set 5 e with ~+ _ 5 ~. This implies 
(Ref. 12) that the partial derivatives 8f./Ozj(z), 1 <j<n, off-  evaluated in 
z ~ R+ exist and are nonnegative for every 1 _< i < n. The single-facility location 
model that we discuss in this paper is now given by 

(P) inf max ~pi(x), 
x e ~  s I<_i<_n 

with q~i: ~ ' ~  ~ defined by ~0;(x):=f~(~/(x)). The above optimization problem 
is called a min-max problem and arises, for example, in the location of an 
emergency unit (Ref. 1 1). Clearly, if all the functions f- are equal, problem 
(P) reduces to inf{~01(x): x ~ S } .  Most continuous unconstrained single- 
facility location problems are special cases of the optimization problem (P) 
(Ref. 11), and this problem has in general a nondifferentiable objective 
function (Ref. 13). Since the functionsf~ are continuous on the open set 5 e 
and nondecreasing on ~7-, it follows that the function z~*maxl<_i~,f~(z) 
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satisfies the same properties; hence, our model is a special case of a more 
general model discussed in Ref. 14. This implies (Refs. 10 and 14) that there 
exists an easily computable hyperrectangle ~ which contains at least one 
optimal solution of (P). If the distance is measured by an arbitrary norm 
and s = 2, this hyperrectangle ~ can be replaced by the smaller set conv(~), 
with conv(~) the convex hull of ~ (Ref. 15), or by any rectangle containing 
conv(~). From these remarks, it follows now that there exists an easily 
computable hyperrectangle ~ such that solving (P) is equivalent to solving 

(Q) min max ~Og(X). 
x ~ g r  1 <_i<_n 

From the equivalence between (Q) and (P), it is also easy to find some aoe Ns 
and r > 0 such that an optimal solution x* belongs to the set ao + rN, with 
B the open Euclidean unit ball. A way to construct such a sphere is given 
by the following procedure. Consider the center ao of N, and take r bigger 
than the Euclidean distance from a0 to one of the rectangle vertices. This 
sphere yields a starting ellipsoid for the ellipsoid algorithm to be proposed 
in Section 3. Let us now introduce 

~0:= max ~Pi. 
1 < i < ~ n  

By our assumptions, it follows that the directional derivative 

r y):=lim [~p(x + t y )  - r  
t+o 

exists for every x, y~NS, and so we can define the set 

Fe:= {x~N~: ~o'(x; y)>O, for every ye~ '} .  

Since every optimal solution of (P) belongs to F~, this means that F~ is not 
empty. If we want to solve the nondifferentiable optimization problem (P) 
by some iterative procedure, we have to find out whether an iteration point 
is optimal or not. In general, this is a difficult computational task. It turns 
out to be easier to check whether a point belongs to F~; since all optimal 
solutions belong to F~, this might be a good stopping strategy. So, we stop 
the iterative procedure if the present iteration point belongs to F~. In general, 
this does not mean that the point is optimal for (P). However, if the functions 
f are convex, it is well known that the set F~ coincides with the set of optimal 
points. In Lemma 2.1, a weaker condition is presented for the equivalence 
between local and global optima. To derive an efficient algorithm for check- 
ing whether the present iteration point belongs to F~o, we need first to give 
an easy characterization of this set. Among other topics, this will be discussed 
in the next section. 
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2. Properties 

To give a geometrical description of elements of F~, we need to calculate 
the directional derivative ~o'(x; y) with ~0: Es ~ given by 

~o(x) := max ~oi(x) and r :=jS(7(x)). 
1 <_i<_n 

Since f is differentiable on the open set 5: with Eg ~_ 5e, it follows by the 
chain rule of differentiation (Ref. 12) that 

(0}(x; y) = ~ (c3f./c~zj)(7"(x))g'~j (x-  dj ; y), (3) 
j = l  

t X with 7e:( - d  j ,  y) the directional derivative of the gauge 7~ at x-dj 
in the direction y. Since (c~f~/c~z:)(7(x))>O, the finite-valued function 
y~-~ q~(x; y) is positively homogeneous and convex, and so it is quasidiffer- 
entiable in the sense of Pshenichnyi (Ref. 16). Moreover, by relation (3), it 
follows that y w-~ ~0}(x; y) is the support function of the compact convex set 

~r = ~ (~:/~z:)(r(x)) or%(x- 4), 
j = l  

with 07%(x- dj) the subgradient set of 7% at x - d j .  Hence by Theorem 3.4 
of Ref. 16, the function y~-, qY(x; y) is quasidifferentiable in the sense of 
Pshenichnyi and by the same result it is the support function of the set 

with 

I(x) := { 1 < i_< n: ~0(x) = q)i(x) }. 
By these observations and xoeF~ if and only if Oeg~O(Xo), the next result 
follows immediately. 

Theorem 2.1. If r Ns denotes the set 

cony( Y (~ (gfi/Sz,)(7(x))a7%(x-d:))), 
\ i e l ( x )  \ j =  1 

then x0~F~ if and only if 0~Cg(Xo). 

To check the above condition for some Xo, we need to solve a member- 
ship problem. In the next examples, this membership problem will be spec- 
ified for gauges often used in location theory. 
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Example 2.1. Taking for each 1 <j<n the set fgj given by 

(ffj:={xe[~S:Npj(x)~l}, l < p j <  o0, 

with Np(x):= F]Xl]p the/p-norm at x, it follows by the above result for Xo not 
belonging to @ that xo~F~ if and only if 

O~conv({c/: i~I(xo) } ), 

with 

c,:= Z (afdazAO,(xo))WVpj(Xo- ~) 
j=l 

and VNpj(X) the gradient of Npj at x # 0. It is well known for x # 0 that 

VN,(x)=jlxllA-Pl i l, 
L ~(x31xslP-' ] 

with c5 the sign function defined as 

-1 ,  ifx<O, 

~(x) := O, if x = O, 

1, ifx>O. 

In this case, one has to decide upon the feasibility of the linear system 

X;c,= 0, ~ ~i=l ,  Xi>0, for every 1 < i<n .  
iel(xo) i~l(xo) 

A possible way to do this is by applying phase one of the simplex algorithm. 
Moreover, for Xo belonging to ~ ,  say xo=d~, we have xoeF~ if and only if 

with 

j ~ k  

and 

(1/q~) + (1/p~) = 1. 
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If I(xo) consists of only one element, the above membership problem is trivial 
to check. To conclude this example, we observe that efficient algorithms for 
s = 2 to solve both membership problems are presented in Ref. 17. In that 
paper, the complexity of  these decision problems for s > 2 is also discussed. 

Example 2.2. Consider for each 1 < j  < n a polytope f#j_ R ~, i.e., 

fgj= conv({v,:, . . . , v,:} ), 

with vb, . . . ,  v~j its vertices and 0eint(f~j). If  v ~ . . . ,  v2 5 are the vertices of  
its polar f#2, it follows again by Theorem 2.1 that xoeF~0 if and only if 

0 convC  x0, 
with 

and 

(~i "~-- ~ (~fi/~Zj)(~(Xo)) conv({v~ : Is/j(X0)} ), 
j ~ l  

/j (x0):= {lj<i<_r2 : ~e:(Xo-4) = (xo-d:, v~)}. 

By Lemma 1.5 of  Ref. 9, 

cgi:=conv(j=~ (OfJ~zj)(,(Xo)){v~" l~/j(x0)}), 

and so cgi is again a polytope for every id(xo). 
This implies that conv(Ui~z(~o) %) is also a polytope; hence, in principle, 

one can solve the above decision problem by linear programming. 
As noticed in the introduction, the set Fo may contain nonoptimal 

points. In order to ensure that F~ coincides with the set of  optimal points, 
we introduce the following set of functions. 

Definition 2.1. See Ref. 18. Let ~r be a convex set. A function 
h: R " ~ E  is called quasiconvex on cg if the sets ~h(a)nCr are convex for 
every a e E, with ~h(a):= {X~ E": h(x) < a} the so-called strict lower level 
set of h of level a. 

Observe (Ref. 18) that h: R " ~  ~ is quasiconvex on cg if and only if 

h(s + (1 - s  <max{h(xl) ,  h(x2)}, 

for every xl,  x2~:d and 0_<~__< 1. 
It is now possible to prove the following result. 
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Lemma 2.1. If  for every 1 < i<n, the func t ionf  : ~ " ~  is nondecreas- 
ing on R~- and differentiable and quasiconvex on an open convex set 6 ~ with 
R~. ~ 5 ~, and if the gradient Vf.(z) contains at least one positive component 
for every z e 5  p, then the set F~ of  stationary points coincides with the set of 
optimal solutions of  (P). 

Proof. Clearly, every optimal solution of  (P) belongs to F~. To prove 
the reverse, we observe the following. For every 1 <i<n ,  it follows by the 
nonnegativity of  Vf(z)  for every z~5 a and the convexity of  7~j, 1 <j<n,  
that 

~Oi(X , y )  = ~ ( ( ~ f / a z j ) ( ~ / ( X ) ) ~ / ~ j  ( X  --  4 " ; Y )  
j = l  

n 

<- Z (a f /ez j ) ( r (x ) ) ( r~ , (x  + y -  4 )  - r~ j (x -  4) )  
j=, 

=jS' ( r (x) ;  r(x  + y) - r(x) ), 

for every y ~ .  Hence, for xo~F~ and y s ~  fixed, this implies that 

0 < ~o'(Xo ; y) = max{~pffXo ; y):  isI(xo)} 

< max{ f ' (7(xo);  7(xo + y) - 7(Xo)) : isI(xo) } 

=f~y)(7(x0) ; 7(Xo + Y) - 7(Xo) ), (4) 

for some i(y)~I(xo). Since we assume that Vf(y)(z)> 0 contains at least one 
positive component for every z~5 e, it follows from Theorem 2 of  Ref. 19 
that f~v) is pseudoconvex on 5 e, and so by (4) we obtain 

q)(Xo + y) > f(y)( 7( Xo + y) ) > f(y)( 7( Xo) ) = q)(Xo). 

Since the above inequality holds for every y~ R ", it must follow that Xo is an 
optimal solution of  (P). []  

If  x0 does not belong to F~, it follows that 

Y-:= {y~ ~ :  ~0'(Xo ; y) <0} 

is nonempty, and this implies 3 - _  • ,  with 

X : =  ~ ,~(LP~(~O(Xo))-Xo) and XoECl(..~,(q~(Xo))). 
~>0 

To apply the central-cut version of  the ellipsoid algorithm proposed in the 
next section, one needs at each iteration an element of  the normal cone 
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JVu,(xo) of ~,(~O(Xo)) at the center x0r  of the current ellipsoid, i.e., 

Xz(x0) := {x* ~ Rs: (x  - x0, x*) < 0, for every x ~ cl (~,(q3(x0))) }. 

Clearly, Y.~(x0) equals ~ff ~ with ~ l  ~ the polar cone of J~ff. To guarantee 
that X_~(x0) is nonempty, we assume in the remainder that the functions 
f~: R " ~ R ,  1< i<  n, are nondecreasing on ~$ and differentiable and quasi- 
convex on an open convex set 5e with R-~ ~_ 6 a. These conditions imply that 
the objective function ~0 of (P) is continuous and quasiconvex on R~ ; so, 
by a well-known separation result (Ref. 1), it follows that X.~(x0) is non- 
empty for Xo not belonging to F , .  For q~ quasiconvex and continuous, it is 
shown in Proposition 1 of Ref. 20 using a more complicated proof than for 
the convex case (Ref. 21) that ~ equals 9- for 9- nonempty. Since 
yv--~ (0'(Xo ; y) is the support function of 3~0(Xo), one can now apply the same 
proof as for convex functions (see Theorem VI.1.3.5 of Ref. 21), and so the 
following result holds. Recall that the set Cg(x) is defined in Theorem 2.1. 

Theorem 2.2. If  x0 does not belong to F~, then X.~(x0) = Uz>_0 3-Cg(x0). 

As shown in the next section, it is sufficient to know an element of the 
normal cone X~(Xo) for the execution of the so-called central-cut version 
of the ellipsoid algorithm. However, if one wants to use convexlike deep 
cuts (Refs, 22 and 23), which have a positive influence on the convergence 
speed as shown in Theorem 3.1, we need to consider the following subclass 
of differentiable functions. 

Definition 2.2. The function h: E n  ~ differentiable on an open set 5 a, 
with ~-~_Se, is said to have a locally bounded gradient if, for every z~5 ~ 
there exists some e > 0 and some constant M such that lIVh(y)t[2 < M  for 
every y belonging to z + E~, with ~ the open Euclidean unit ball. 

A class of functions related to the above class is given in the next 
definition. 

Definition 2.3. See Ref. 24. A function h: ~ n  E is called Lipschitz con- 
tinuous on a set o~ff ~_ R n with Lipschitz constant L if Ih(z) - h(y)l <L[lz -Y112 
for every z, y belonging to o~ff. 

If  the gradient of the function f~ is locally bounded, it must follow for 
every compact set oYg~5 ~ that there exists some M > 0  such that 

tlVJ~(y) IIz < M ,  for every y e ~ .  
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Additionally, if ~ is also convex, this implies by Theorem 9.19 of Ref. 12 
that f is Lipschitz continuous on off. Since by Theorem 41.D of Ref. 25, 
every finite-valued convex function on ~s is Lipschitz continuous on any 
compact subset, it is now easy to verify that the function ~0;(x)=f(y(x)) is 
also Lipschitz continuous on any compact subset of ~ .  Finally, noting that 
Lipschitz continuity is preserved under the finite max operator, we obtain 
that the objective function 

~0(x) = max ~0t(x) 
1 ~i<_n 

of (P) is again Lipschitz continuous on any compact subset. Knowing the 
Lipschitz constants of the functions f ,  1 <i<_n, and 7~j, 1 <j<n, one can 
also easily determine the Lipschitz constant of the function r By the 
above observations, we obtain that the function q~ is quasiconvex on ~ and 
Lipschitz continuous on any compact subset. A class of functions closely 
related to quasiconvexity and Lipschitz continuity is now given by the next 
definition. 

Definition 2.4. See Ref. 26. A function h: ~ " ~ R  is called lower sub- 
differentiable on X___R" if, for every z e ~ ,  there exists some z*e~  n 
satisfying 

h(y) >_h(z) + <y-z, z *), 

for every y belonging to ,,~,h(h(g)) N fit". The set of all so-called lower sub- 
gradients z* of the function h at z is denoted by O-h(z). Finally, the function 
h: ~ n - ~  is called boundedly lower subdifferentiable on oU if h is lower 
subdifferentiable on o~ff and there exists a constant N >  0 such that, for every 
z~ f f ,  there exists some z*~O-h(z) with ][z*[I2_<N. 

The following result is needed for the proof of the next theorem. 
Although it is known (Refs. 27 and 28), we list its proof for completeness. 

Lemma 2.2. For every x, Xo ~ r~, with r > 0 and ~ the open Euclidean 
unit ball in R s, and for any hyperplane ~ going through xo, the orthogonal 
projection x g  of x on ~ belongs to x/~r~. 

Proof. If ~ is a hyperplane in ~s going through x0, it follows that 
there exists some x*~ ~s with ][x*[J2 = 1 such that 

~ =  {x~0~s: (X-Xo, x*> =0}. 

The orthogonal projection xar of x on W satisfies 

x ~ = x  + (Xo-X, x*)x*, 
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and this implies 

I I x ~ -  (Xo, x*)x*[l~ = IIx-  (x ,  x*)x*l l~  

= I1x1122 - ( (x ,  x'F)2_< Ilxll~. (5) 

Moreover, using xg  ~ ~ ,  we obtain by the Cauchy-Schwartz inequality that 

IIx~- (Xo, X*)x* II ~ = [Ix~[I ~ -2 (Xo ,  x*)(xar, x*) + ( (Xo, x*) )2 

= I Ix~ l l~ - ( (x0 ,  x * ) ) 2  >__ Ilxal[~-IIx0ll2,. (6) 

Combining Inequalities (5) and (6) and using x, xo~r~, the desired result 
follows. [] 

To prove the next result, we need to introduce the following notation. 
For any function h: ~---,~, the function ha  denotes the restriction of h to 
.~ff_ R~; i.e., the domain of ha  is ~ ,  and ha  equals h on ~ff. 

Theorem 2.3. For every 1 < i< n, if the functions f~: E n  R are non- 
decreasing on E~ and differentiable and quasiconvex on an open convex set 
6e with ~-  ___ 6e, and if its gradients are locally bounded, then the restriction 
r of the objective function ~o: Es_~ E of optimization problem (P) is bound- 
edly lower subdifferentiable for every compact set o~ff_ ~s. Moreover, if Xo 
does not belong to F~ and x0~int(s(), it follows that cl(cone(8-~pa(x0))) 
equals U~>oUg(x0) for every compact set ~ff with cl(cone(8-~0a(X0))) 
denoting the smallest closed cone including d-~0a(X0). 

Proof. By the remarks after Definition 2.3, it follows that r is quasi- 
convex on ~ and Lipschitz continuous on any compact subset. To prove 
that r is boundedly lower subdifferentiable, we will construct for each 
Xo~ff a lower subgradient xg with uniformly bounded norm. This construc- 
tion is a slight modification of a similar construction in Ref. 26. Let o,~ be 
some compact set and Xo~gg, and suppose that 

~ 0 a ( ~ , ~ ( x o ) )  = ~%(~O(xo)) • 

is nonempty. Since ~p is quasiconvex on ~ and Lipschitz continuous on 
every compact subset, it must follow that the nonempty lower level set 
~%(~o(xo)) is an open convex set. Due to xo not being an element of 
LZ~(~o(xo)), there exists by Theorem 11.3 of Ref. 1 some nonzero uoe~ ~ 
satisfying 

(x - Xo, uo) < 0, for every xeLZ~(q~(Xo)). 

If Xo does not belong to F~,, we obtain by Theorem 2.2 that every element 
of the cone Ux>o Ug(xo) satisfies the above property. Consider now the 
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hyperplane 

~ : =  {xe~S: ( X - X o ,  Uo) =0}, 

and let x~r denote the orthogonal projection of x on ovg. Since 
dfc~e~o((O(Xo)) is empty and x z  belongs to Yf, this implies that 
~o(x~)>tp(Xo). Since #g is compact, there exists some r > 0  satisfying 

_~r~, with ~ the open Euclidean unit ball. Hence by Lemma 2.2 and the 
Lipschitz continuity of q~ on x/2r cl(~), we can find some L > 0 satisfying 

~p(x0) - q~(x) < (o(x~ ) - q~(x) < LIdx:w - xl12, (7) 

for every xe&a~(~o(x0))n df~Se~(~0(x0))c~ r~. Moreover it follows, using 
x 0 -  x~  _1_ u0 and x - x ~  parallel to Uo, that 

( X - X o ,  Uo)= ( x - x ~ ,  Uo) + ( x ~ - X o ,  uo) 

= ( x - x ~ ,  no) =-IPuoll21lx-x~llz. (8) 

Hence by (7) and (8), we obtain that tuo/lIUoh belongs to O-q~(Xo), and 
so the first part is proved. To verify the remaining part, we observed already 
that any element of the cone Ux>0 Afg(Xo) can be taken as Uo, and this 
immediately implies by the above construction that 

U ACg(Xo) ~- cl(cone(~-~o~r(Xo))). 
,~_>o 

Due to the definition of O-~os(xo) and Xo belonging to in t (~) ,  one can 
easily show that ~-q~(Xo) must be a subset of the normal cone JV'~e(Xo) to 
cl(~,(~O(Xo))) at Xo ; so, by Theorem 2.2, it follows that 

cl(cone(O-~o~(xo))) _c U ACg(Xo) �9 
L_>0 

Hence, the two sets are equal, and this concludes the proof. [] 

In the next section, we will discuss an algorithm to solve optimization 
problem (P). 

3. Deep and Central-Cut Ellipsoid Algorithm 

In this section, a so-called deep and central-cut version of the ellipsoid 
algorithm will be presented for the solution of our optimization problem 
(P). Although this method can also be applied to general unconstrained 
optimization problems with similar properties, we present only the method 
in the framework of our general location model. It is assumed that the 
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functions f. : R " ~ E  are nondecreasing on R~- and differentiable and quasi- 
n c convex on an open convex set 5e with R+_ 5 e. These conditions guarantee 

that q) is quasiconvex on E~. Moreover, if the gradients of the functions f- 
are locally bounded, then the function q~ is also Lipschitz continuous on any 
compact subset of its domain; by Theorem 2.3, it follows that ~0 is boundedly 
lower subdifferentiable on any compact subset. Observe for computational 
purposes that, in the proof of Theorem 2.3, an easy construction of a lower 
subgradient is given if the present iteration point does not belong to F~. 
However, in order to carry out this construction, we need to know the 
Lipschitz constant on a certain compact subset. This means that, if the 
function ~0 is not Lipschitz continuous on that set or if the Lipschitz constant 
is not known, we can apply only a central-cut version of the algorithm. 

As verified already, the following essential assumption holds for our 
optimization problem. Recall that & denotes the open Euclidean unit ball. 

Assumption 3.1. An optimal solution x* of the optimization problem 
(P) exists satisfying x* ~a0 + r~, with a0~ Es and r>  0 known in advance. 

We will now give a description of the iterative procedure to solve (P). 
Each step of the algorithm tests whether the current iteration point belongs 
to F~ n (a0 + r~). If so, the algorithm is stopped, and the present iteration 
point is taken as a solution. Under the additional assumption that Vf,.(z) 
contains at least one positive component for every 1 < i<n and z~6e, it 
follows by Lemma 2.1 that this iteration point is indeed optimal. Since the 
general framework of the ellipsoid algorithm is well known (Refs. 29 and 
30), we proceed by describing each iteration step. Clearly, by Assumption 
3.1 it follows that x* ~a0 + r~  satisfies 

tp(x*) =min{(0(x): xeR  s} = min{q~(x): xeao+r~} ,  

and so the ellipsoid algorithm is started by taking a0 + r cl(N) as the initial 
ellipsoid 

g(Ao ; a0): = {xeE':  ( x - a o ,  Aol (X-ao))  < 1}, 

with 

Ao = r2I. 

Suppose now the ellipsoid algorithm starts the (m + l)th step, m >0, and x* 
belongs to g(Am ; am). By the stopping rule, it follows that ak does not belong 
to F~ c~ (ao+ r~) for every k<_m, and so lm> ~0(X*), with 

1,~:= min{ ~o(ak) : k < m, akeao + r~} 

the lowest recorded function value on the set a0 + r~  until iteration m. 
Clearly, lo is properly defined due to ao~ao + r&. 
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In order to generate cuts we distinguish the following cases. 

Case 1. am belongs to ao+ rM. Since am does not belong to F~0, it 
follows by Theorem 2.2 (in case q~ is not Lipschitz continuous or the Lipsch- 
itz constant is not known) that 

-- . s .  * ~(q~(am)) - Y g  (~m) ' -  { x ~  . (x,  a , , )<fl , ,} ,  (9) 

with 

flm:=(am, a~m) and a~m~ U ~(~(am). 
2 > 0  

Hence, the optimal solution x* belongs to the closed halfspace :r 
Moreover, if the Lipschitz constant for the function ~0 on a0 + x/~r cl(~) is 
known, there exists by Theorem 2.3 an easy computable nonzero a~e[~" 
satisfying 

r >_ qg(am) + (X -- am, am>, (10) 

for every x~L~'~,(cp(am))n (ao+r~).  In order to derive a so-called deep or 
central cut with respect to ~0, observe by (10) and using x*~ao+r~) that 

lm> (o(x*) _> ~p(am) + (x* - am, * am), 

and so x* belongs to the lower halfspace 

with 

<X, 

~m "= (am, a~) + l,, -- q~(am). 

It can be shown for both cases (Ref. 22) that the hyperplane if(tim) is a 
valid central cut, if lm= ~0(am), or a valid deep cut, if lm< ~p(am), and so there 
exists (Ref. 29) a smaller-volume ellipsoid g(A,,+ ~; a,,+ ~) with 

x* ~ ( A m  ; am) ("1 ~r ~o~(Am+ l "~ a m + l ) .  

This finishes the construction of a so-called objective cut. 

Case 2. a,. does not belong to ao+r~.  I fh(x) :=  I[x-ao[12, we obtain 
by the subgradient inequality that 

h(x) > h(am) + ( x -  am, Vh(am)), 

with 

V h( am) = (am - ao) /IJ am - ao II 2, 
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and so it follows that 

r > h(x*) >_ h(a,~) + (x* - am, Vh(am)) = (x* - ao, Vh(am)). 

Hence, the optimal point x* belongs to the lower halfspace 

J~f-(flm) : :  {x~R~: (x ,  Vh(am))<flm}, 

with 

flm:=r+ (ao, Vh(am)). 

Since one can also prove that the hyperplane H(flm) is a valid deep cut (Ref. 
22), there exists again a smaller volume ellipsoid e(Am+l;am+l) satisfying 

x* ~g(A,,, ;am) n H -  (flm) ~-g(A,,+ l ; a,,,+ O. 

This finishes the construction of a so-called norm cut. 

Since we have explained how to generate cuts in each step, we can now 
give a description of the algorithm. 

Algorithm 3.1. 

Step 0. 

Step 1. 

Step 2. 

Step 3. 

Let m := 0 and A0 := r2L 

If am ~ F~ ~ (ao + r~) ,  then stop; else, go to Step 2. 

If  am~ao+ r~,  then apply an objective cut; else, apply a norm 
cut. 

Update the ellipsoid, let m := m + 1, and return to Step 1. 

As already observed in Section 2, the reader is referred to Ref. 17 for 
a discussion on the verification of the stopping rule in Step 1 by means of 
an easy algorithm in case of a min-max planar location problem with an l e- 
norm to measure distances. This algorithm is based on the results derived 
in the previous section. Moreover, the linear time algorithm presented in 
Ref. 17 to check whether 0 belongs to the convex hull of  a finite set of points 
in R 2 can also be applied in the case of polyhedral gauges, while for Ns, 
s > 2, this reduces to the feasibility of a linear programming problem. The 
above generation of simple deep cuts is known for the convex-constrained 
case (Refs. 22, 23 and 31). Finally, denoting the depth of  a cut by 

0 _< am: = [(am, a~) - f lm]/x/(a~, Ama~m) < 1, 
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one can show (Ref. 29) that in Step 3 the ellipsoid ~(Am+ 1 ; am+ l) given by 

Am+ 1 : =  r - ~mbmbtm), 

am + 1 : :  a m  - -  , m b m  , 

with the updating values 

,~.,:= s2(1 - a~)/(s 2-1), 
o',,,:= 2(1 +sct,.)/[(s+ 1)(1 + a.,)], 

r , . :=  (1 +Sam)/(S+ 1), 

and 

b,n:= Amam/x/(am, "*- ~" "* Amain), 

is the smallest volume ellipsoid containing g(A,, ; am) n H-(~m). 
In order to give an easy (contrary to the proof  in Ref. 32) convergence 

proof  of  the above algorithm, we need the following lemma. 

Lemma 3.1. It follows that ~o(lm) n (ao + r~ )  __ g(A,, ; am) n 
ovf-(flm), for every m > 0 ,  with r ;am) the ellipsoid constructed in the 
ruth step of  the algorithm. 

Proof. If  m = 0 ,  we obtain that ao~ao+r~; so, for both function 
classes, an objective cut is performed. Hence, if the Lipschitz constant of  ~o 
is known, it follows by (10) that 

lo > tp(x) _> ~O(ao) + (x  - ao, a~), 

for every x s  (ao + r~ )  n L.e~(tp(ao)) and this implies that 

(ao + rM) n ~r ___ ~ - ( f l o ) .  

Moreover, if the other class of  functions is considered, we obtain by (9) that 
again 

(ao + r~ )  n s ~ ~ - ( f l o )  ; 

and using ao + r ~  ~ g(Ao ; ao), both cases yield that 

~ ( l o )  c~ (ao + r~ )  ~_ ~ - ( f l o )  n g(Ao ; ao). 

Hence, the desired result holds for m = 0; to continue the proof, we suppose 
that the result holds for step m = k. Since l~+1 __< lk, the induction hypothesis 
clearly implies that 

Le~(l~+ ~) n (a0 + r~ )  _ ,~(Ak ; ak) c~ ~ - ( / ~ )  

~_ g(Ak+ 1 ; a~+ 1). (11) 
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Moreover, if ak+l~ao+r~, it follows similarly as for m = 0  that, for both 
cases, it must hold that 

L~e~(/k+ 1) n (ao+r~) ~ - ( f l k + l ) ,  

and this yields by (11) that 

~q~( lk + 1) ~ (ao + r~)  c g( Ak + 1 ; ak + 1) ~ &~-(/~k+ 1). 

Finally, if ak+l ~a0+ r@, a norm cut will be performed; as in the previous 
case, using the subgradient inequality for h(x)= l l x -  ao [12, it follows that 

ao + r ~ H - ( ~ k + l ) .  

Applying again (11) yields 

~ ( l k +  1) C7 ( a o + r ~ ) ~ ( A k + l  ; a k + l )  ~ ~ - ( f l k + l ) ,  

and so the desired result is proved. []  

It is now possible to prove the main result. With 

a: = (s 2 - 1)/s 2, b:= ~ / ( s+  1 ) / ( s -  1), 

observe that 

ab> 1, 1/ . lab < 1. 

Theorem 3.1. If  the ellipsoid algorithm executes an infinite number of  
iterations, then it follows that l,, 1 ~p(x*). Moreover, if q~ is Lipschitz con- 
tinuous on a0 + ,,/2r cl(~)  with Lipschitz constant L, then there exists some 
m0 such that 

0 _< lm- (o(x*) 
m--I  

<-- ( L r / ~ / 2 ) ( 1 / ~ f ~ )  m I-I d l  - a~ 2~/ (1 - a k ) / ( l  + ak), 
k=O 

for every m >_ m0. 

Proof. We start by evaluating det(Am). It can be proved (Ref. 22) that 
m--I  

det(A,,)=det(Ao) H (5],(1-crk)). 
k = 0  

Since Ao = r2I and Am is positive definite for every m, we obtain after some 
calculations that 

rn--1 

0 <det(A,,) = r 2s ~ (1/ab)~(1 - a2)~[(1 - a~) / ( l  + ak)] 
k = 0  

_< r2~( 1 lab) s', 
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and this yields det(Am)~0. Clearly, lm is a nonincreasing sequence satisfying 
Ira>go(x*) for every m > 0 ,  and so it follows that c:=limmro~ lm exists and 
c > cp(x*). Suppose now that c > go(x*). Since x*eao + r~, there exists some 
E > 0 such that x* + 8 ~ _  ao + r ~  for every 0 < 3 < E. Moreover, since go is 
continuous on a0 + r ~  and go(x*) < c, there exists also some 0 < 3 < E satisfy- 
ing x* + ~ _  ~ ( c ) ,  and so 

x* + ~ _ ~  Lee(c) n (ao + r~) .  

Hence, by Lemma 3.1 and lm ,~ c, we obtain that, for every m > 0, 

x* + ~ ~ LP ~( c) n ( ao + r~) ~_ ,~r lm) n (ao + r~) 

=_~(A,. ; am) n ~ - ( p , . ) .  

Finally, since 

vol(8(Am ; am)) = ~ V~., with V~ := vol(~),  

it follows that 

0 < ,~sV~ = vol (x*  + $~) 

<vol(g(Am ; am) n H-(fl,,,)) 

_< (1/2) vol(g(A,,, ; a.,)) 

= (1/2) det#-d~) Vs, 

for every m > 0, and this contradicts det(Am)~0. Hence, it must follow that 
lm+ go(x*), and so the first part is proved. To verify the inequality, we observe 
that, for go Lipschitz continuous with Lipschitz constant L and using 
l,~ + go(x*), there exists some m0 such that 

[l,~- go(x*)]/L <_ e, 

for every m>rno. Take now xex*+[(lm-go(x*))/L]N with m>mo. We 
obtain 

go(x) - go(x*) <_ L l l x -  x* 112 <lm - go(x*), 

and this implies xEL~(lm) and 

x* + [(/m - go(x*))/L]~ =_ L~(lm) n (ao + r~) 
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Thus, 

VOI(X* + [(lm -- r  <vol($(Am ; am) ~ Jg~--(flm)) 

__< (1/2) vol(g(Am ; a,,)), 

and computing these volumes gives 

m - 1  
* s 2s [(/m-tp(x )) /L] Vs<( l /2)  r I-I ( 1 / a b ) S ( 1 - a ~ f [ ( 1 - a k ) / ( l + a g ) ] V ~ .  

k = 0  

Dividing by V~, raising both sides to s -1, and multiplying by L yields the 
desired result. [] 

We finish this section by pointing out that, if ak = 0 for every k > 0, then 
the result boils down to the well-known geometric rate of the unconstrained 
central-cut ellipsoid algorithm (Refs. 32 and 33). The convergence rate was 
proved to be the same in the constrained case (Ref. 34). However, in Ref. 
34, only the central-cut case was analyzed. Observe that the analysis of the 
deep-cut case exhibits the positive influence of deep cuts in the convergence 
of the algorithm and can be extended to the constrained case as well (Ref. 
22). However, the proof of this result for the constrained case is much more 
elaborate. 

4. Computational Experience 

In order to test the algorithm, it was coded by us in Turbo Pascal 
version 7.0; no commercial routines were used, except the standard functions 
and procedures of the language. The program includes the optimality test 
discussed in Ref. 17, which was applied to each center not subject to a norm 
cut. The program was compiled and executed on an AST Bravo 4/33, a 
PC/AT compatible with an Intel 80486 CPU with built-in numerical pro- 
cessor and clock speed of 33 MHz. The numerical precision used is the 
double precision (64-bit IEEE floating-point format) real numbers of Turbo 
Pascal. The computational experience was carried out over 300 uncorrelated 
planar instances of the problem taking as the disutility function of each 
demand point di~ ~2, 1 <_ i <_ n, the function 

f . ( z )  = 100w; log(zi+ 1), for 1 <i_< In/3], 

J~(z) = 100wi arctan(zi), for [n/3]+ 1 _<i< [2n/3], 

f~(z) = 5wiz~, for [2n/3 ] + 1 < i < n, 
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with [x] denoting the ceiling of xe  ~. Assigning to the nonlinear (concave) 
disutility functions a bigger weight than to the linear ones prevents that the 
linear functions dominate the concave functions prohibiting ~p to become 
convex. 

It is easy to verify, due to 

Itxllr<_llxll~<~llxl[2, for every 1 < p <  ~ and x e ~  s , 

that for s = 2 the constant 

x/~max( max { 100wi}, max {5wi}} 
( i  <_i<12n/3] [2n/3]+ 1 <_i<__n 

is a Lipschitz constant for the function tp. 
The instances were generated randomly in the following way. We start 

by describing the selection of  the problem parameters. 
The number n of  demand points belongs to {5, 25, 50, 100, 250}. 
For  the/p-norm being used, we take pf~ { 1.1, 1.5, 1.9, 2.1, 3.0} and con- 

struct two different classes of  examples. For the first class, one value is 
assigned to all the demand points; for the second class, denoted in the tables 
as "mix," to each demand point a value pi selected randomly from the set 
{1.1, 1.5, 1.9, 2.1, 3.0} is assigned. The weight wl of  the demand point di is 
determined as follows. We draw uniformly numbers from the interval [0, 1 ], 
say fit, 1 <i<n, and set wi equal to 

hi = ~i/ ~ kj, for every 1 < i_< n. 
j= l  

250 
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Table la. 
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Results for quasiconvex functions applying central 
cuts. 

n p T It 0 N 

5 1.1 0.154 91.3 91.0 0.3 
5 1.5 0.166 98.2 98.1 0.1 
5 1.9 0.165 97.7 97.6 0.1 
5 2.1 0.160 94.4 94.4 0.0 
5 3.0 0.179 98.5 98.4 0.1 
5 mix 0.169 100.2 100.1 0.1 

25 1.1 0.665 97.5 97.4 0.1 
25 1.5 0.654 102.0 102.0 0.0 
25 1.9 0.649 99.2 99.2 0.0 
25 2.1 0.694 99.3 99.3 0.0 
25 3.0 0.730 109.4 109.4 0.0 
25 mix 0.700 106.3 106.3 0.0 

50 1.1 1.308 103.4 103.3 0.1 
50 1.5 1.296 102.2 102.2 0.0 
50 1.9 1.402 112.1 112.1 0.0 
50 2.1 1.402 108.8 108.8 0.0 
50 3.0 1.256 102.0 101,8 0.2 
50 mix 1.422 112~2 112.2 0.0 

100 1.1 2.286 93.8 93.7 0.1 
100 1.5 2.606 103.6 103.6 0.0 
100 1.9 2.654 109.3 109.3 0.0 
100 2.1 2.708 107.0 107.0 0.0 
100 3.0 2.688 107.0 106.8 0.2 
100 mix 2.503 103.7 103.7 0.0 

250 1.1 6.307 102.2 102.2 0.0 
250 1.5 6.572 106.7 106.7 0.0 
250 1.9 6.845 111.1 111.1 0.0 
250 2.1 6.979 114.1 114.1 0.0 
250 3.0 6.828 111.1 111.1 0.0 
250 mix 7.107 115.5 115.5 0.0 

N o w ,  we descr ibe  the  p rocedure  to genera te  the d e m a n d  points .  Al l  the  
d e m a n d  po in t s  are  genera ted  wi th in  the  square  [0, 250] x [0, 250], for  which  
a c lus tered  s t ructure  is c rea ted  using the fo l lowing procedure .  F i rs t ,  we d r aw  
two integers  m~ and  m2 ranging  f rom 1 to 20; then,  we divide  the  square  
[0, 250] x [0, 250] in to  (ml + 1)(m2+ 1) subsquares  by  genera t ing  r a n d o m l y  
ml x-axis  coord ina te s  and  m2 y-axis  coord ina tes  in (0, 250) (of. Fig.  1). Then,  
we label  these subsquares  f rom 1 to  (m~ + 1)(m2+ 1). 

Subsequent ly ,  we choose  r a n d o m l y  accord ing  to  these labels  some given 
n u m b e r  o f  subsquares .  In  each chosen  subsquare ,  we d raw  un i fo rmly  a given 
n u m b e r  o f  d e m a n d  points .  F ina l ly ,  the  r ema in ing  d e m a n d  po in t s  a re  d r a w n  
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Table lb. Results for quasiconvex functions applying deep cuts. 

59 

n p T _It 0 ao  N aN DO ado 

5 1.1 0.159 90.5 90.4 0.0041 0.1 0.0035 62.7 0.0058 
5 1.5 0.165 97.2 97.1 0.0033 0.1 0.0055 67.2 0.0050 
5 1.9 0.165 97.3 97.2 0.0022 0.1 0~0006 71.7 0.0030 
5 2.1 0.159 93.2 93.2 0.0026 0.0 0.0000 65.3 0.0037 
5 3.0 0.165 97.3 97.1 0,0043 0.2 0.0181 68.5 0.0062 
5 mix 0.169 99.3 99.2 0.0030 0.1 0.0045 69.7 0.0043 

25 1.1 0.617 96.0 95.9 0.0033 0.1 0.0009 68.8 0.0046 
25 1.5 0.669 101.1 101.1 0.0033 0.0 0.0000 75.9 0.0044 
25 1.9 0.653 98.4 98.4 0.0028 0.0 0.0000 75.6 0.0037 
25 2.1 0.628 97.8 97.8 0.0026 0.0 0.0000 71.1 0.0036 
25 3.0 0.720 108,5 1 0 8 . 5  0.0027 0.0 0.0000 80.4 0.0036 
25 mix 0.695 105.3 105.3 0.0030 0.0 0.0000 75.5 0.0042 

50 1.1 1.318 101.0 1 0 0 . 9  0.0045 0.1 0,0041 77.4 0.0058 
50 1.5 1.249 101.2 1 0 1 . 2  0.0032 0.0 0.0000 76.1 0.0043 
50 1.9 1.396 110.3 1 1 0 . 3  0.0033 0.0 0.0000 83.4 0.0043 
50 2.1 1.358 107.3 1 0 7 . 3  0.0034 0.0 0.0000 82.0 0.0045 
50 3.0 1.338 101.2 1 0 1 . 0  0.0028 0.2 0.0042 76.5 0.0037 
50 mix 1.360 110.4 1 1 0 . 4  0.0031 0.0 0.0000 80.9 0.0041 

100 1.1 2.354 92.2 92.1 0.0043 0.1 0.0053 70.4 0.0057 
100 1.5 2.455 101.6 1 0 1 . 6  0.0033 0.0 0.0000 76.1 0.0044 
100 1.9 2.778 108.5 1 0 8 . 5  0.0035 0.0 0.0000 82.4 0.0046 
100 2.1 2.549 104.8 1 0 4 . 8  0.0037 0.0 0.0000 78.3 0.0050 
100 3.0 2.583 105.9 1 0 5 . 7  0.0030 0.2 0.0084 80.2 0.0039 
100 mix 2.615 102.7 1 0 2 . 7  0.0036 0.0 0.0000 76.5 0.0049 

250 1.1 5.954 100.0 1 0 0 . 0  0.0047 0.0 0.0000 75.0 0.0063 
250 1.5 6.290 105.6 1 0 5 . 6  0.0040 0.0 0.0000 79.7 0.0053 
250 1.9 6.530 109.6 1 0 9 . 6  0.0039 0.0 0.0000 83.3 0.0051 
250 2.1 6.721 112.4 1 1 2 . 4  0.0038 0.0 0.0000 87.6 0.0049 
250 3.0 6.573 110.3 110.3 0.0036 0.0 0.0000 85.7 0.0046 
250 mix 6.796 114.1 114.1 0.0045 0.0 0.0000 85.9 0.0059 

uniformly from the original square [0, 250] x [0, 250] and added to the 
already existing set of demand points, in a total of n points. 

Finally, the execution is stopped with a relative error (see Ref. 22) less 
than 5 x 10-6, 

For each pair (n,p), 10 uncorrelated instances of the problem were 
generated according to the procedure described above, and each of them 
was solved by the central-cut and the deep-cut versions of the algorithm. 
Also for each value of n, 10 uncorrelated instances were generated with 
mixed norms and also solved by both versions of the algorithm. 

The results are summarized in Table la and Table lb, where each row 
corresponds to averages of 10 instances. 
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Table 2a. Results for convex functions applying 
central cuts. 

n p T It 0 N 

5 1.1 0.111 69.5 69.5 0.1 
5 1.5 0.123 77.6 77.6 0.0 
5 1.9 0.120 75.8 75.8 0.0 
5 2.1 0.117 74.0 74.0 0.0 
5 3.0 0.120 75.3 75.2 0.1 
5 mix 0.134 84.5 84.5 0.0 

25 1.1 0.457 77.0 77.0 0.0 
25 1.5 0.537 84.8 84.8 0.0 
25 1.9 0.468 76.8 76.8 0.0 
25 2.1 0.522 81.2 81.2 0.0 
25 3.0 0.508 80.7 80.7 0.0 
25 mix 0.504 81.4 81.4 0.0 

50 1.1 0.866 73.7 73.6 0.1 
50 1.5 0.914 78.7 78.7 0.0 
50 1.9 0.920 80.7 80.7 0.0 
50 2.1 0.980 81.1 81.1 0.0 
50 3.0 0.944 80.8 80.8 0.0 
50 mix 0.933 81.8 81.8 0.0 

100 1.1 1.766 77.1 77.1 0.0 
100 1,5 1.911 82.9 82,9 0.0 
100 1,9 1.846 80.3 80,3 0.0 
100 2.1 1.877 81.6 81.6 0.0 
100 3.0 1.934 84.1 84.1 0.0 
100 mix 1.855 81.3 81.3 0.0 

250 1.1 4.397 77.1 77.1 0.0 
250 1.5 4.624 81.4 81.4 0.0 
250 1.9 4.581 79.6 79.6 0.0 
250 2.1 4.992 86.5 86.5 0.0 
250 3.0 5.122 88.9 88.9 0.0 
250 mix 4.676 82.0 82.0 0.0 

In  Table  la,  we list the average time T taken  by the central-cut  version 
of the a lgor i thm in seconds of the AST Bravo, the average total  n u m b e r  of  
i terat ions It, the average n u m b e r  of objective cuts O, and  the average n u m b e r  
of  n o r m  cuts N. 

In  Table  lb ,  we list the average time T taken by the deep-cut version 

of the a lgor i thm in seconds of  the AST Bravo, the average total  n u m b e r  of  
i terat ions It, the average n u m b e r  of objective cuts O, the average depth of  an  
objective cut t~ o, the average n u m b e r  of  n o r m  cuts N and  the cor responding  
average depth t2N, the average n u m b e r  of  objective cuts that  were deep DO, 
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Table 2b. Results for convex functions applying deep cuts. 
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n p T It 0 (to N ~tN DO ~tDo 

5 1.1 0,077 48.3 48.2 0.0960 0.1 0.0019 30.8 0.1498 
5 1.5 0.094 59.0 59.0 0.0769 0,0 0.0000 35,4 0.1232 
5 1.9 0.087 54.6 54.6 0.0892 0.0 0.0000 34.4 0.1402 
5 2.1 0.083 51.8 51.8 0.0947 0.0 0.0000 33.4 0.1464 
5 3.0 0.089 55.4 55.3 0.0849 0.1 0.0058 34.0 0.1367 
5 mix 0.107 66,7 66.7 0.0651 0.0 0,0000 36,2 0,1074 

25 1.1 0,349 51.5 51.5 0.1039 0.0 0.0000 34.7 0.1513 
25 1.5 0,399 65.6 65.6 0.0685 0.0 0.0000 37.9 0.1111 
25 1.9 0.334 55.6 55.6 0.0896 0.0 0.0000 33.7 0.1381 
25 2.1 0,358 60.2 60.2 0.0805 0,0 0.0000 37.5 0.1267 
25 3.0 0,365 60.8 60.8 0.0791 0.0 0.0000 35.6 0.1258 
25 mix 0.345 54.7 54.7 0.1044 0,0 0.0000 35.7 0.1558 

50 1.1 0,627 53.0 52.9 0.0830 0,1 0.0022 34.2 0.1283 
50 1.5 0.692 57.4 57.4 0.0857 0.0 0.0000 35,5 0.1316 
50 1.9 0.701 60.1 60.1 0.0819 0.0 0.0000 36.6 0.1275 
50 2.1 0,705 60.2 60.2 0.0854 0.0 0.0000 37.9 0.1275 
50 3.0 0.680 59.6 59.6 0.0822 0.0 0.0000 37.0 0.1283 
50 mix 0.707 57.4 57.4 0,0931 0.0 0.0000 36,9 0.1452 

100 1.1 1,251 55.1 55.0 0.0875 0.1 0,0022 34.9 0.1377 
I00 1,5 1.387 60.8 60.8 0.0835 0.0 0.0000 36.9 0.1308 
I00 1,9 1.468 63.3 63.3 0.0671 0.0 0.0000 37.7 0.1081 
100 2.1 1.354 59.3 59.3 0.0884 0.0 0.0000 36.6 0.1321 
100 3.0 1.558 68.0 68.0 0.0627 0.0 0.0000 39,2 0.0998 
100 mix 1.377 58.8 58.7 0.0868 0.1 0.0028 35.7 0.1368 

250 1.1 3,139 56,1 56.1 0.0795 0.0 0.0000 34.6 0.1277 
250 1.5 3,159 56.9 56.9 0.0939 0.0 0.0000 37.4 0.1406 
250 1.9 3,212 57.7 57.7 0.0892 0.0 0.0000 36.2 0.1368 
250 2.1 3.702 67.1 67.1 0.0706 0.0 0.0000 38.6 0.11 I0 
250 3.0 3.786 68.6 68.6 0.0749 0.0 0.0000 38.5 0.1176 
250 mix 3.423 61.3 61.3 0.0756 0.0 0.0000 36.6 0.1224 

and the corresponding average depth (average taken within the deep objec- 
tive cuts only) t~oo. 

Notice that the seemingly small average depth may be explained by the 
dependence between the value of the Lipschitz constant and the depth of 
the cut. For the convex case, more encouraging results are reported in Ref. 
22 with an average depth of cuts ten times bigger and about 16% reduction 
in iterations and time. 

In order to report some results on convex functions, we generated simi- 
lar examples where the disutility function of  every demand point is taken 
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linear, i.e., 3~(z)= wlzi. This is known as the Rawls problem, and the corre- 
sponding results are given in Table 2a and Table 2b. For  this problem, the 
influence of  the deep cuts is much more encouraging. 
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