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General Models in Min-Max Continuous Location:
Theory and Solution Techniques'?
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Communicated by S. Schaible

Abstract. In this paper, a class of min-max continuous location prob-
lems is discussed. After giving a complete characterization of the station-
ary points, we propose a simple central and deep-cut ellipsoid algorithm
to solve these problems for the quasiconvex case. Moreover, an elemen-
tary convergence proof of this algorithm and some computational results
are presented.
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1. Introduction

Let 2:={d,,...,d,} SR’, s>2, denote a set of » different demand
points, and let xeR’ be the location of a facility to be chosen. If 4, i=
1,...,n, are compact convex sets with Ocint(%,) and int(%,) denoting the
interior of ¥;, we define the distance between x and d; by ys(x—d}), with
¥4, the gauge or Minkowsky functional (Refs. I and 2) of the set ¢;, i.e.,

74/(x):=inf{r>0: xet%,}. n

If ¢, is symmetric around 0, the corresponding gauge is called a norm. The
motive to consider continuous location problems with arbitrary gauges is
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twofold. First of all, although most papers discuss only continuous location
models with rectangular, Euclidean, or Tchebycheff norms, it is known that
an [,-norm (with p not equal to 1, 2, or o) or a general polyhedral or block
norm (Refs. 3 and 4) sometimes fits better the empirical data (Refs. 4-7).
This implies that it might be sensible to consider arbitrary norms within
location models. Secondly, it is sometimes unrealistic to assume, as imposed
by a norm, that the distance is symmetric (Ref. 8). Hence, to model this
asymmetric behavior of distances (i.e., the distance between x and y is not
the same as the distance between y and x), we need to consider arbitrary
gauges. Although a gauge seems to be an intractable distance function, it
turns out that the analysis of location models with gauges is relatively simple
due to the convexity properties of gauges. In particular, a gauge ys of a
compact convex set % with Oeint(%) is a positively homogeneous, nonnega-
tive finite-valued convex function (Refs. 2 and 9). It should be clear from
the above observations that the selection of a distance function is central in
all continuous location problems, and this topic is intensively discussed in
an excellent recent survey paper by Plastria (Ref. 10). To conclude our
discussion of how to measure distance, we observe that the Euclidean, rectan-
gular, or Tchebycheff norms were used mostly to obtain easy tractable non-
linear/linear programming problems (Ref. 11). However in this paper, we
present a simple deep-cut version of the ellipsoid algorithm which can handle
efficiently a large subclass of the general single-facility location model with
gauges. To introduce the model, let the function y: R°*—R% be given by

Y(X) = (Yo (x—d), ..., 75, (x—dn)), 2

and suppose that f;: R"—>R,, 1<i<n, denote a set of nondecreasing
functions on R} associated with the demand points. We also assume that
the functions f; are differentiable on an open set & with R} = &. This implies
(Ref. 12) that the partial derivatives df;/0z;(z), 1<j<n, of f; evaluated in
zeR% exist and are nonnegative for every 1 <i<n. The single-facility location
model that we discuss in this paper is now given by
P) in[gs Imax 0{x),

with ¢, : R°—R defined by @i{x):=f(y(x)). The above optimization problem
is called a min-max problem and arises, for example, in the location of an
emergency unit (Ref. 11). Clearly, if all the functions f; are equal, problem
(P) reduces to inf{g(x): xeR"}. Most continuous unconstrained single-
facility location problems are special cases of the optimization problem (P)
(Ref. 11), and this problem has in general a nondifferentiable objective
function (Ref. 13). Since the functions f; are continuous on the open set &
and nondecreasing on R, it follows that the function zr>max;<;<,fiz)
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satisfies the same properties; hence, our model is a special case of a more
general model discussed in Ref. 14. This implies (Refs. 10 and 14) that there
exists an easily computable hyperrectangle # which contains at least one
optimal solution of (P). If the distance is measured by an arbitrary norm
and s =2, this hyperrectangle # can be replaced by the smaller set conv(2),
with conv(2) the convex hull of 2 (Ref. 15), or by any rectangle containing
conv(Z). From these remarks, it follows now that there exists an easily
computable hyperrectangle # such that solving (P) is equivalent to solving
(Q) min max ¢(x).
xe# 1<i<n
From the equivalence between (Q) and (P), it is also easy to find some a,e R’
and r>0 such that an optimal solution x* belongs to the set ap+r%, with
% the open Euclidean unit ball. A way to construct such a sphere is given
by the following procedure. Consider the center a, of %, and take r bigger
than the Euclidean distance from a, to one of the rectangle vertices. This
sphere yields a starting ellipsoid for the ellipsoid algorithm to be proposed
in Section 3. Let us now introduce
= max @;.

1<i<n

By our assumptions, it follows that the directional derivative
¢'(x; ) ::11?01 [o(x+1y)—o(x)]/1
t

exists for every x, yeR’, and so we can define the set
I'yi={xeR’: ¢'(x; y) >0, for every yeR’}.

Since every optimal solution of (P) belongs to I',, this means that I, is not
empty. If we want to solve the nondifferentiable optimization problem (P)
by some iterative procedure, we have to find out whether an iteration point
is optimal or not. In general, this is a difficult computational task. It turns
out to be easier to check whether a point belongs to I',; since all optimal
solutions belong to I',, this might be a good stopping strategy. So, we stop
the iterative procedure if the present iteration point belongs to I',. In general,
this does not mean that the point is optimal for (P). However, if the functions
[ are convex, it is well known that the set I, coincides with the set of optimal
points. In Lemma 2.1, a weaker condition is presented for the equivalence
between local and global optima. To derive an efficient algorithm for check-
ing whether the present iteration point belongs to I',,, we need first to give
an easy characterization of this set. Among other topics, this will be discussed
in the next section.
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2. Properties

To give a geometrical description of elements of I',,, we need to calculate
the directional derivative ¢'(x; y) with ¢: R°—>R given by

o(x):= max odx) and @(x):=f(y(x)).

Since f; is differentiable on the open set & with Ri <., it follows by the
chain rule of differentiation (Ref. 12) that

PN =3 (f/02) (7 ()7 (x— b5 ), 3)
j=1

with yg(x—d;; y) the directional derivative of the gauge 74, at x—d
in the direction y. Since (&fi/0z;)(y(x))=0, the finite-valued function
y@i(x; y) is positively homogeneous and convex, and so it is quasidiffer-
entiable in the sense of Pshenichnyi (Ref. 16). Moreover, by relation (3), it
follows that y+— ¢i(x; y) is the support function of the compact convex set

0p)= ¥ (8/0)(r () Oys(x ),

with 0y¢(x —d;) the subgradient set of y4, at x—d;. Hence by Theorem 3.4
of Ref. 16, the function y+— ¢'(x; y) is quasidifferentiable in the sense of
Pshenichnyi and by the same result it is the support function of the set

6tp(x)¢=conV< U 6%(?6)),
iel(x)
with
I(x)={1<i<n: p(x) = )}
By these observations and x,€I’, if and only if 0edg(x,), the next result

follows immediately.

Theorem 2.1. If €(x) =R’ denotes the set
conv{ ) (z /021 31 =),
then xo€l’, if and only if 0e%(xo).
To check the above condition for some x4, we need 1o solve a member-

ship problem. In the next examples, this membership problem will be spec-
ified for gauges often used in location theory.
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Example 2.1. Taking for each 1 <j<n the set 4, given by
g:={xeR": N,(x)<1}, 1<p<oco,

with N,(x):=| x|, the /,-norm at x, it follows by the above result for x, not
belonging to & that x,eT’, if and only if

Oeconv({c;:iel(xo)}),
with
¢;'= Y, (9/i/0z;)(y(x0))VN,(x0—d;)
i=1
and VN, (x) the gradient of N, at x#0. It is well known for x#0 that

SCenla ™!
VN, (x)=}x], ~* E ,
S(xlx” !

with & the sign function defined as

-1, if x<0,
6(x):=¢ 0, if x=0,
1, ifx>0.

In this case, one has to decide upon the feasibility of the linear system

Y Aa=0, Y A=l A;=0, forevery 1<i<n.

ief(xp) iel(xg)

A possible way to do this is by applying phase one of the simplex algorithm.
Moreover, for x, belonging to 2, say x,=d;, we have x,eT’,, if and only if

Oeconv( U %),

ief(xg)

with

%1={x6R‘: x— Y (8fi/0z;)(y(x0))VNp(x0—d;) S(aﬁ/ﬁzk)(y(x()))}
J*k /3

and

(1/q0) +(1/pr)=1.
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If I(x,) consists of only one element, the above membership problem is trivial
to check. To conclude this example, we observe that efficient algorithms for
s=2 to solve both membership problems are presented in Ref. 17. In that
paper, the complexity of these decision problems for s>2 is also discussed.

Example 2.2. Consider for each 1<j<n a polytope 4,=R’, i.e.,
g,=conv({vy,...,0,}),

with vy, . . ., v,, its vertices and Oeint(%)). If 05, . . ., v2, are the vertices of
its polar %}, it follows again by Theorem 2.1 that xeeT',, if and only if

Oeconv< U %),

iel(xp)

with
= 3. (0f/02) (7)) conv({e7 : [ (o)),

and
Li(xo) = {L;<i<r} : yg(xo—d;) =<{xo—dj, 07}

By Lemma I.5 of Ref. 9,

n
%:=conV< 2 (9fi/ 02)(y (xo)){vi : lelj(xo)}),
j=1

and so %, is again a polytope for every iel(xy).

This implies that conv(\;exx,) %) is also a polytope; hence, in principle,
one can solve the above decision problem by linear programming.

As noticed in the introduction, the set I', may contain nonoptimal
points. In order to ensure that I', coincides with the set of optimal points,
we introduce the following set of functions.

Definition 2.1. See Ref. 18. Let ¥<R” be a convex set. A function
h: R"—=R is called quasiconvex on ¥ if the sets #,(a) N ¥ are convex for
every ¢ eR, with Z,(a):={xeR": h(x) <a} the so-called strict lower level
set of 4 of level a.

Observe (Ref. 18) that #: R"—R is quasiconvex on ¥ if and only if
h(Ax; + (1 = A)x2) <max{h(x)), h(x2)},

for every x;, x,€4 and 0<A<]1.
It is now possible to prove the following result.
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Lemma 2.1. If for every 1 <i<n, the function f; : R"—R is nondecreas-
ing on R% and differentiable and quasiconvex on an open convex set & with
Ri<, and if the gradient Vfi(z) contains at least one positive component
for every ze &, then the set I, of stationary points coincides with the set of
optimal solutions of (P). :

Proof. Clearly, every optimal solution of (P) belongs to I',. To prove
the reverse, we observe the following. For every 1 <i<u#, it follows by the
nonnegativity of Vfi(z) for every ze& and the convexity of 74, 1<j<n,
that

0053 0)= 3 @/e)(r0)Ve, (x =453 )
<3 (80N ra, 5+ =)~ ya(x—d))

j=1
=fi (y(x); v(x+y)—v(x)),
for every ye R’. Hence, for x,eT", and yeR’ fixed, this implies that
0<¢'(xo; y)=max{ei(xo;y): i€l(xo)}
<max{ f;(y(xo); ¥(x0 ) — y(x0)): i€X(x0) }
=Jin(7(x0); ¥ (Xo+¥) — ¥(Xo)), 4

for some i( y) €l(x,). Since we assume that Vfy,)(z) =0 contains at least one
positive component for every ze.%, it follows from Theorem 2 of Ref. 19
that fi,, is pseudoconvex on &, and so by (4) we obtain

P(x0+y) 2 fipn (¥ (X0 + 1)) 2 fio0(7 (%0)) = @(x0).

Since the above inequality holds for every y& R’ it must follow that x; is an
optimal solution of (P). O

If x, does not belong to I',, it follows that
T ={yeR’: ¢/(x0;y) <0}
is nonempty, and this implies J < .#", with

Az :=1L>)0 AL (p(x0)) —x0) and xpecl(Z,(P(x0))).

To apply the central-cut version of the ellipsoid algorithm proposed in the
next section, one needs at each iteration an element of the normal cone
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AHe(x0) of ZLy(p(x0)) at the center xo¢ 1, of the current ellipsoid, i.e.,
Nep(x0) = {x*eR’: {x—xo, x*) <0, for every xecl (£ ,(p(x0)))}.

Clearly, 4 (xo) equals " °, with X ° the polar cone of /. To guarantee
that A%(x0) is nonempty, we assume in the remainder that the functions
fi: R">R, 1<i<n, are nondecreasing on R} and differentiable and quasi-
convex on an open convex set & with R €. These conditions imply that
the objective function ¢ of (P) is continuous and quasiconvex on R ; so,
by a well-known separation result (Ref. 1), it follows that #%(x,) is non-
empty for x, not belonging to I',,. For ¢ quasiconvex and continuous, it is
shown in Proposition 1 of Ref. 20 using a more complicated proof than for
the convex case (Ref. 21) that & equais J for J nonempty. Since
Y @'(xo; ¥) is the support function of d¢(x,), one can now apply the same
proof as for convex functions (see Theorem VI.1.3.5 of Ref. 21), and so the
following result holds. Recall that the set €(x) is defined in Theorem 2.1.

Theorem 2.2. If x, does not belong to I, then A(xo) = U =0 AE(x0).

As shown in the next section, it is sufficient to know an element of the
normal cone A4g(x,) for the execution of the so-called central-cut version
of the ellipsoid algorithm. However, if one wants to use convexlike deep
cuts (Refs. 22 and 23), which have a positive influence on the convergence
speed as shown in Theorem 3.1, we need to consider the following subclass
of differentiable functions.

Definition 2.2.  The function 4: R"—R differentiable on an open set &,
with Rf =, is said to have a locally bounded gradient if, for every ze %,
there exists some €>0 and some constant M such that [VA(y){.<M for
every y belonging to z+ €4, with # the open Euclidean unit ball,

A class of functions related to the above class is given in the next
definition.

Definition 2.3. See Ref. 24. A function #: R"— R s called Lipschitz con-
tinuous on a set /< R” with Lipschitz constant L if |A(z) — h(y)| < L|z— y|»
for every z, y belonging to .

If the gradient of the function f; is locally bounded, it must follow for
every compact set # < & that there exists some M >0 such that

IVA(»).<M,  forevery yeX .
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Additionally, if 2 is also convex, this implies by Theorem 9.19 of Ref. 12
that f; is Lipschitz continuous on #". Since by Theorem 41.D of Ref. 25,
every finite-valued convex function on R’ is Lipschitz continuous on any
compact subset, it is now easy to verify that the function ¢(x)=f(y(x)) is
also Lipschitz continuous on any compact subset of R®. Finally, noting that
Lipschitz continuity is preserved under the finite max operator, we obtain
that the objective function

¢(x)= max ¢(x)

1<i<n

of (P) is again Lipschitz continuous on any compact subset. Knowing the
Lipschitz constants of the functions f;, 1<i<n, and y4,, 1 <j<n, one can
also easily determine the Lipschitz constant of the function ¢. By the
above observations, we obtain that the function ¢ is quasiconvex on R’ and
Lipschitz continuous on any compact subset. A class of functions closely
related to quasiconvexity and Lipschitz continuity is now given by the next
definition,

Definition 2.4. Sce Ref. 26. A function 4: R*—>R is called lower sub-
differentiable on # <R” if, for every ze.t, there exists some z*eR”
satisfying

h(y)=h(z)+{y—z, 2%,

for every y belonging to .Z,(A(z)) n A". The set of all so-called lower sub-
gradients z* of the function # at z is denoted by 8 A(z). Finally, the function
h: R"-R is called boundedly lower subdifferentiable on J if 4 is lower
subdifferentiable on " and there exists a constant N >0 such that, for every
ze X', there exists some z*ed h(z) with ||z*]|,<N.

The following result is needed for the proof of the next theorem.
Although it is known (Refs. 27 and 28), we list its proof for completeness.

Lemma 2.2. For every x, xoer%, with r>0 and % the open Euclidean
unit ball in R’, and for any hyperplane # going through x,, the orthogonal
projection x,- of x on # belongs to \/2r4.

Proof. If 5 is a hyperplane in R’ going through x,, it follows that
there exists some x*€R* with ||[x*|,=1 such that
H={xeR*: {x—x0, x*)=0}.
The orthogonal projection x, of x on J# satisfics

X =x+{xo—x, X*Ox¥,
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and this implies
1% = (o, X*Dx™(13= llx = (x, x*Dx*113
=I5 (<x, x*>)? <l x)3. &)
Moreover, using x € #, we obtain by the Cauchy-Schwartz inequality that

1266 = {0, X*D* 3= x5 = 2¢ 0, X* D<o, X*D + ({Xp, x*) )’

=[x l12~ (X0, X)) 2 13,13 — %013 (6)
Combining Inequalities (5) and (6) and using x, xoer4, the desired result
follows. O

To prove the next result, we need to introduce the following notation.
For any function 4: R°>R, the function A, denotes the restriction of 4 to
A =R’; ie., the domain of hy is ¢, and A equals 4 on %"

Theorem 2.3. For every 1<i<n, if the functions f;: R"—R are non-
decreasing on R} and differentiable and quasiconvex on an open convex set
& with Ri €&, and if its gradients are locally bounded, then the restriction
¢ of the objective function ¢: R*— R of optimization problem (P) is bound-
edly lower subdifferentiable for every compact set o = R’. Moreover, if x,
does not belong to I', and xoeint(A"), it follows that cl(cone(d™ @x(x)))
equals {Jzs0 A%(x0) for every compact set A with cl(cone(d” @x(xo)))
denoting the smallest closed cone including 6™ @.(xo).

Proof. By the remarks after Definition 2.3, it follows that ¢ is quasi-
convex on R’ and Lipschitz continuous on any compact subset. To prove
that @, is boundedly lower subdifferentiable, we will construct for each
Xo€ A a lower subgradient xJ with uniformly bounded norm. This construc-
tion is a slight modification of a similar construction in Ref. 26. Let /" be
some compact set and xoe ", and suppose that

L P Qx(x0)) =L J(@(x0)) N H

is nonempty. Since ¢ is quasiconvex on R® and Lipschitz continuous on
every compact subset, it must follow that the nonempty lower level set
ZL9(x0)) is an open convex set. Due to x, not being an element of
Z A p(xp)), there exists by Theorem 11.3 of Ref. 1 some nonzero uyeR’
satisfying

{x—Xo, oy <0, for every xe % ,(9(xo)).

If xo does not belong to I',,, we obtain by Theorem 2.2 that every element
of the cone | -0 A%(x,) satisfies the above property. Consider now the
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hyperplane
H={xeR": {x—xo, oy =0},

and let x, denote the orthogonal projection of x on #. Since
H N L (p(x)) is empty and x, belongs to #, this implies that
o(x»)=@(xo). Since A" is compact, there exists some r>0 satisfying
A =rdPB, with # the open Euclidean unit ball. Hence by Lemma 2.2 and the
Lipschitz continuity of ¢ on \/2r cl(£), we can find some L> 0 satisfying

@(x0) = 0(x) < @(xx) — @(x) < L|x0p = x|2, N

for every xe & ,(¢(x0)) N A =L (0(x0)) N rdB. Moreover it follows, using
xo— X Lug and x—x, parallel to up, that

(x—Xo, Ug) ={X— X, Up) + {Xpp— Xo, Up)
=X = X, tho) = —|tholl2l| X — X 2. (8)

Hence by (7) and (8), we obtain that Luo/|uol> belongs to 0~ @(xo), and
so the first part is proved. To verify the remaining part, we observed already
that any element of the cone UA>0 A%(xo) can be taken as u,, and this
immediately implies by the above construction that

AL>)O A% (x0) =cl(cone(d @ (x0))).

Due to the definition of 0 @ (xo) and xo belonging to int(#"), one can
easily show that 0~ ¢, (xo) must be a subset of the normal cone A4 (xp) to
cl(ZL ,(@(x0))) at xo; so, by Theorem 2.2, it follows that

cl(cone(?”pr(xo))) & | 26(x0).
Hence, the two sets are equal, and this concludes the proof. O

In the next section, we will discuss an algorithm to solve optimization
problem (P).

3. Deep and Central-Cut Ellipsoid Algorithm

In this section, a so-called deep and central-cut version of the ellipsoid
algorithm will be presented for the solution of our optimization problem
(P). Although this method can also be applied to general unconstrained
optimization problems with similar properties, we present only the method
in the framework of our general location model. It is assumed that the
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functions f; : R"—~R are nondecreasing on R and differentiable and quasi-
convex on an oper convex set & with R} <€ &. These conditions guarantee
that ¢ is quasiconvex on R’. Moreover, if the gradients of the functions f;
are locally bounded, then the function ¢ is also Lipschitz continuous on any
compact subset of its domain; by Theorem 2.3, it follows that ¢ is boundedly
lower subdifferentiable on any compact subset. Observe for computational
purposes that, in the proof of Theorem 2.3, an easy construction of a lower
subgradient is given if the present iteration point does not belong to I',.
However, in order to carry out this construction, we need to know the
Lipschitz constant on a certain compact subset. This means that, if the
function ¢ is not Lipschitz continuous on that set or if the Lipschitz constant
is not known, we can apply only a central-cut version of the algorithm.
As verified already, the following essential assumption holds for our
optimization problem. Recall that # denotes the open Euclidean unit ball.

Assumption 3.1. An optimal solution x* of the optimization problem
(P) exists satisfying x*eao +r#, with a,e R’ and >0 known in advance.

We will now give a description of the iterative procedure to solve (P).
Each step of the algorithm tests whether the current iteration point belongs
to T'p n (ag+rd). If so, the algorithm is stopped, and the present iteration
point is taken as a solution. Under the additional assumption that Vfy(z)
contains at least one positive component for every 1<i<n and ze¥, it
follows by Lemma 2.1 that this iteration point is indeed optimal. Since the
general framework of the ellipsoid algorithm is well known (Refs. 29 and
30), we proceed by describing each iteration step. Clearly, by Assumption
3.1 it follows that x*eao+r# satisfies

o(x*) =min{p(x): xe R’} =min{p(x): xea,+r&},

and so the ellipsoid algorithm is started by taking ao+r cl(#) as the initial
ellipsoid

€(Ag; ao):={xeR’: {x—ap, A5 (x—ag)y < 1},
with

A() = 7'21.
Suppose now the ellipsoid algorithm starts the (m+ 1)th step, m>0, and x*
belongs to (A4, ; a..). By the stopping rule, it follows that a; does not belong
to T’y 1 (ao+ 1) for every k<m, and so [,,> ¢(x*), with

Ly=min{p(ay): k<m, a,eap+rAB}

the lowest recorded function value on the set ay+r% until iteration m.
Clearly, [, is properly defined due to ageao +r4.
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In order to generate cuts we distinguish the following cases.

Case 1. a,, belongs to ap+r#. Since a, does not belong to I',, it
follows by Theorem 2.2 (in case ¢ is not Lipschitz continuous or the Lipsch-
itz constant is not known) that

L Pan)) SH ™ (Bu) = {xeR": {x, an> < B}, &)
with
Bm={am, any and ane U A%(a,,).
A>0
Hence, the optimal solution x* belongs to the closed halfspace #(B.,,).
Moreover, if the Lipschitz constant for the function @ on ay+/2r cl(%) is

known, there exists by Theorem 2.3 an easy computable nonzero aneR’
satisfying

(D(X)Z(p(am)+<x—am’ ar:>s (10)

for every xe % (o(an)) N (ao+r%). In order to derive a so-called deep or
central cut with respect to @, observe by (10) and using x*eay+r# that

In> (x*) 2 (@) + {x* = @y, a,
and so x* belongs to the lower halfspace

H(Bm)={xeR’: {x, any < Pm}s
with '

Boni=m, @) + b= @)

It can be shown for both cases (Ref. 22) that the hyperplane #(f,,) is a
valid central cut, if ,,= ¢(a,,), or a valid deep cut, if /,, < ¢(a,,), and so there
exists (Ref. 29) a smaller-volume ellipsoid &(A4,,+1 ; 4+1) With

X*€E(Am; am) O K~ (Br) SE(Am+15 Ams1)-
This finishes the construction of a so-called objective cut.

Case 2. a,, does not belong to aq+r#. If h(x):=|x—a,l,, we obtain
by the subgradient inequality that

h(x) = h(a,,) +<{x—an, Vh(a,)>,
with
Vhi(an) = (an— a0)/||@m — aoll2,
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and so it follows that

r>h(x®) 2 h(am) + {x* = an, VA(am) ) = <{x* —ao, Vh(am) ).
Hence, the optimal point x* belongs to the lower halfspace

H ™ (Bm) = {xeR’: {x, VI(am)) < P}
with

Bni=r+ {ag, VA(am)).

Since one can also prove that the hyperplane H(f,,) is a valid deep cut (Ref.
22), there exists again a smaller volume ellipsoid &(A4+1; am+1) satisfying

X*€(Am; ) " H (Br) SE(Ams1; mir)-

This finishes the construction of a so-called norm cut.

Since we have explained how to generate cuts in each step, we can now
give a description of the algorithm.

Algorithm 3.1.
Step 0. Let m:=0 and Ao:=r"I.
Step 1. If a,,eT', n (ao+r4), then stop; else, go to Step 2.

Step 2. If a,.ea0+rd, then apply an objective cut; else, apply a norm
cut.

Step 3. Update the ellipsoid, let m:=m+ 1, and return to Step 1.

As already observed in Section 2, the reader is referred to Ref. 17 for
a discussion on the verification of the stopping rule in Step 1 by means of
an easy algorithm in case of a min-max planar location problem with an /,-
norm to measure distances. This algorithm is based on the results derived
in the previous section. Moreover, the linear time algorithm presented in
Ref. 17 to check whether 0 belongs to the convex hull of a finite set of points
in R” can also be applied in the case of polyhedral gauges, while for R,
§=>2, this reduces to the feasibility of a linear programming problem. The
above generation of simple deep cuts is known for the convex-constrained
case (Refs. 22, 23 and 31). Finally, denoting the depth of a cut by

0<a,= [<ama ar:> —ﬁm]/\/ <a;> Ama;> <1,
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one can show (Ref. 29) that in Step 3 the ellipsoid &(A4,n+1; dm+1) glven by
A1 8,(Am~ Cmbmbry),
A 1= 0= Tl
with the updating values
Smi=s(1—al)/(s*— 1),
G =2(1+sa,)/[(s+ (1 +am)],
Tn=(1+sa,)/(s+1),
and
b= A/ /s Amctiy,

is the smallest volume ellipsoid containing &(A4,, ; @n) N H ™ (Bn).
In order to give an easy (contrary to the proof in Ref. 32) convergence
proof of the above algorithm, we need the following lemma.

Lemma 3.1. 1t follows that L,(l,)n(a+rB)SE(Ay;am) N
H (B, for every m>0, with £(4,,; a.,) the ellipsoid constructed in the
mth step of the algorithm.

Proof. If m=0, we obtain that ayeay+r%#; so, for both function
classes, an objective cut is performed. Hence, if the Lipschitz constant of ¢
is known, it follows by (10) that

lo> @(x) = @(ao) + {x~ao, a5,
for every xe(ag+r#) n ¥ ,(¢(a0)) and this implies that
(a0 +rB) "\ L (p(ao)) = H (Po)-

Moreover, if the other class of functions is considered, we obtain by (9) that
again

(a0 +7B) N L o(plao)) S (Bo);
and using ay+r# < &(Ao ; ao), both cases yield that
Lo(lo) N (ac+rB)SH ™ (Bo) N E(Ao; ao).

Hence, the desired result holds for m=0; to continue the proof, we suppose
that the result holds for step m=k. Since ;. </, the induction hypothesis
clearly implies that

L lee1) N (ao+rB) S E(Ax s ar) N H#(Br)
SE(Ar+1; ). (D
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Moreover, if a;.1eap+r%, it follows similarly as for m=0 that, for both
cases, it must hold that
L 1) N (ao+1B) S H ™ (Br+1),
and this yields by (11) that
Lolles1) N (Aot rB)SE(Ais1s Q1) VK (Br+r).

Finally, if a;+1¢a0+r4, a norm cut will be performed; as in the previous
case, using the subgradient inequality for A(x) =[x —aoll», it follows that

ap+rB<H (Br+1).
Applying again (11) yields
Lo(lks1) N (a0 +rB)SE(Aks1s Q) VK (Pr+1)s

and so the desired result is proved. O

It is now possible to prove the main result. With
a=(=1)/s’, b= (s+D/-1),

observe that
ab>1, 1/ \/Zz—b <1.

Theorem 3.1. If the ellipsoid algorithm executes an infinite number of
iterations, then it follows that ,,| ¢(x*). Moreover, if ¢ is Lipschitz con-
tinuous on a,+/2r cl(#) with Lipschitz constant L, then there exists some
mg such that

0<l,— o(x*)
<(Lr/ D)1/ Jaby" mﬂo -3y,
for every m=my.
Proof. We start by evaluating det(4,,). It can be proved (Ref. 22) that
det(A)=det(40) T (331-02).

Since Ao=rI and A,, is positive definite for every m, we obtain after some
calculations that

0<det(4,,)=r" :1:11 (1/aby' (1= e)'I(1 — @) /(1 + ap)]
=0

S VZS(I/ab)sm’
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and this yields det(4,,) —»0. Clearly, /, is a nonincreasing sequence satisfying
I.>o(x*) for every m>0, and so it follows that ¢:=1lim,.; . /. exists and
c2> ¢(x*). Suppose now that ¢> ¢(x*). Since x*eay+r#, there exists some
€>0 such that x*+ 8B Sao+r# for every 0< 8 < e. Moreover, since ¢ is
continuous on a,+r% and o(x*) <c, there exists also some 0 < § < € satisfy-
ing x*+ 68 < % ,(c), and so

x*+ S.QZE,%,(C) N (ay+ ).
Hence, by Lemma 3.1 and /, | ¢, we obtain that, for every m >0,
x*+ 8BS L (c) N (a+rB) S L (L) O (a0 +rB)
SE(Am; am) N H (Bm)-
Finally, since
vol(&(A,,; a,)) =\/aEt_CAT,,5Vs, with V;:=vol(#),
it follows that
0<5°V,=vol(x*+35%)
LVOl(&E(Am 5 @n) N H (B))
<(1/2) vol(&(Am ; an))

=(1/2)ydet(4) Vs,

for every m >0, and this contradicts det(4,,)—0. Hence, it must follow that
I | ©(x*), and so the first part is proved. To verify the inequality, we observe
that, for ¢ Lipschitz continuous with Lipschitz constant L and using
I, | o(x*), there exists some m, such that

[ln— @(x*)]/L<e,

for every m>m,. Take now xex*+[(l,— @(x*))/L1# with m>m,. We
obtain

o(x) = p(x*) < Lilx—x* |2 <l — p(x*),
and this implies xe L,(/,,) and

X* 4+ [(bn= 9(x*)) /L1B S Lo(l) N (a0 + %)
SEAm; am) VA (Bm)-
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Thus,
vol(x™ + [(1n— @(x*)) /L1B) <VON(E(Am ; @m) O H ™ (Bm))
<(1/2) vol(& (A ; am)),

and computing these volumes gives

m—1
(= @(x*)/LYV < (1/2)\/VZS k[_lo (1/aby’(1 - ) T(1— @) /(1 + a)]Vs.
Dividing by V;, raising both sides to s~', and multiplying by L yields the
desired result. [

We finish this section by pointing out that, if @, =0 for every k >0, then
the result boils down to the well-known geometric rate of the unconstrained
central-cut ellipsoid algorithm (Refs. 32 and 33). The convergence rate was
proved to be the same in the constrained case (Ref. 34). However, in Ref.
34, only the central-cut case was analyzed. Observe that the analysis of the
deep-cut case exhibits the positive influence of deep cuts in the convergence
of the algorithm and can be extended to the constrained case as well (Ref.
22). However, the proof of this result for the constrained case is much more
elaborate.

4. Computational Experience

In order to test the algorithm, it was coded by us in Turbo Pascal
version 7.0; no commercial routines were used, except the standard functions
and procedures of the language. The program includes the optimality test
discussed in Ref. 17, which was applied to each center not subject to a norm
cut. The program was compiled and executed on an AST Bravo 4/33, a
PC/AT compatible with an Intel 80486 CPU with built-in numerical pro-
cessor and clock speed of 33 MHz. The numerical precision used is the
double precision (64-bit IEEE floating-point format) real numbers of Turbo
Pascal. The computational experience was carried out over 300 uncorrelated
planar instances of the problem taking as the disutility function of each
demand point d;eR?, 1 <i<n, the function

f{2)=100w; log(z;+ 1), for1<i<[n/3],
f(z) =100w; arctan(z,), for [n/31+1<i<[2n/3],
Jiz)=Swz,, for [2n/31+1<i<n,
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with [x] denoting the ceiling of xeR. Assigning to the nonlinear (concave)
disutility functions a bigger weight than to the linear ones prevents that the
linear functions dominate the concave functions prohibiting ¢ to become
convex.

It is easy to verify, due to

Ixl,<lxf1<+slxl2,  forevery 1<p<ooand xeR’,

that for s=2 the constant

\/imax{ max {100w;}, max {5wi}}

1<i<|[2n/3] 2rn/31+1<i<n

is a Lipschitz constant for the function ¢.

The instances were generated randomly in the following way. We start
by describing the selection of the problem parameters.

The number 7 of demand points belongs to {5, 25, 50, 100, 250}.

For the /,-norm being used, we take p;{1.1, 1.5, 1.9, 2.1, 3.0} and con-
struct two different classes of examples. For the first class, one value is
assigned to all the demand points; for the second class, denoted in the tables
as “mix,” to each demand point a value p; selected randomly from the set
{1.1, 1.5, 1.9, 2.1, 3.0} is assigned. The weight w; of the demand point 4; is
determined as follows. We draw uniformly numbers from the intervali [0, 1],
say w;, 1 <i<n, and set w; equal to

n
h=w;,/ Y w;,  foreveryl<i<n.
j=1

y-axis
250

1 2 3

4 5 6

7 8 9
1 1 2

0 0 1 ! J{ T-axis
0 250

Fig. 1. Clustered problem m; =2, m,=3.
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Table 1a. Results for quasiconvex functions applying central

cuts.

n r T It (0] N
5 1.1 0.154 91.3 91.0 03

5 1.5 0.166 98.2 98.1 0.1

5 1.9 0.165 97.7 97.6 0.1

) 2.1 0.160 94.4 944 0.0

5 3.0 0.179 98.5 98.4 0.1

5 mix 0.169 100.2 100.1 0.1
25 1.1 0.665 97.5 974 0.1
25 1.5 0.654 102.0 102.0 0.0
25 19 0.649 99.2 99.2 0.0
25 2.1 0.694 99.3 99.3 0.0
25 3.0 0.730 109.4 109.4 0.0
25 mix 0.700 106.3 106.3 0.0
50 1.1 1.308 103.4 103.3 0.1
50 1.5 1.296 102.2 102.2 0.0
50 19 1.402 112.1 112.1 0.0
50 2.1 1.402 108.8 108.8 0.0
50 3.0 1.256 102.0 101.8 0.2
50 mix 1.422 112.2 112.2 0.0
100 1.1 2.286 93.8 93.7 0.1
100 1.5 2.606 103.6 103.6 0.0
100 1.9 2.654 109.3 109.3 0.0
100 21 2.708 107.0 107.0 0.0
100 3.0 2.688 107.0 106.8 0.2
100 mix 2.503 103.7 103.7 0.0
250 1.1 6.307 102.2 102.2 0.0
250 1.5 6.572 106.7 106.7 0.0
250 1.9 6.845 111.1 111.1 0.0
250 2.1 6.979 114.1 114.1 0.0
250 3.0 6.828 i1 111.1 0.0
250 mix 7.107 115.5 115.5 0.0

Now, we describe the procedure to generate the demand points. All the
demand points are generated within the square [0, 250] x [0, 250], for which
a clustered structure is created using the following procedure. First, we draw
two integers m, and m, ranging from 1 to 20; then, we divide the square
[0, 2501 x [0, 250] into (my + 1)(m,+ 1) subsquares by generating randomly
my x-axis coordinates and m, y-axis coordinates in (0, 250) (cf. Fig. 1). Then,
we label these subsquares from 1 to (m; + 1)(m+1).

Subsequently, we choose randomly according to these labels some given
number of subsquares. In each chosen subsquare, we draw uniformly a given
number of demand points. Finally, the remaining demand points are drawn
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Table 1b. Results for quasiconvex functions applying deep cuts.

n b4 T It (] ao N ay DO apo
5 1.1 0.159 90.5 904 00041 0.1 00035 627  0.0058
5 1.5 0.165 97.2 97.1  0.0033 0.1 0.0055 67.2 0.0050

5 1.9 0.165 97.3 972 0.0022 0.1 0.0006 71.7 0.0030

5 2.1 0.159 93.2 932 0.0026 0.0 0.0000 653 0.0037
5 3.0 0.165 97.3 97.1  0.0043 0.2 0.0181 68.5 0.0062

5 mix 0.169 99.3 99.2 0.0030 0.1 0.0045 69.7 0.0043
25 1.1 0.617 96.0 959 0.0033 0.1 0.0009 68.8 0.0046
25 1.5 0.669 101.1 101.1 0.0033 0.0  0.0000 75.9 0.0044
25 1.9 0.653 98.4 984 0.0028 0.0 0.0000 756  0.0037
25 2.1 0.628 97.8 978 00026 0.0 00000 71.1 0.0036
25 3.0 0.720 108.5 108.5 0.0027 0.0 0.0000 804  0.0036
25 mix 0.695 105.3 1053 0.0030 0.0 0.0000 755 0.0042
50 1.1 1.318 101.0 100.9 0.0045 0.1  0.0041 774  0.0058
50 1.5 1.249 101.2 101.2  0.0032 0.0 0.0000 76.1 0.0043
50 1.9 1.396 110.3 1103 0.0033 0.0 00000 834 0.0043
50 2.1 1.358 107.3 1073 0.0034 0.0 0.0000 820 0.0045
50 3.0 1.338 101.2 101.0 0.0028 0.2 0.0042 76.5 0.0037
50 mix 1.360 110.4 110.4  0.0031 0.0 00000 809 0.0041
100 1.1 2.354 92.2 921 0.0043 0.1 0.0053 704  0.0057
100 1.5 2.455 101.6 101.6  0.0033 0.0 0.0000 76.1 0.0044
100 1.9 2.778 108.5 108.5 0.0035 0.0 0.0000 824  0.0046
100 2.1 2.549 104.8 104.8  0.0037 0.0 00000 783  0.0050
100 3.0 2.583 105.9 105.7 0.0030 0.2 0.0084 80.2  0.0039
100 mix 2.615 102.7 102.7 0.0036 0.0 0.0000 765  0.0049
250 1.1 5.954 100.0 100.0 0.0047 0.0 0.0000 750  0.0063
250 1.5 6.290 105.6 105.6  0.0040 0.0 0.0000 79.7  0.0053
250 1.9 6.530 109.6 109.6  0.0039 0.0 0.0000 833  0.0051
250 2.1 6.721 1124 1124 0.0038 0.0 0.0000 87.6 0.0049
250 3.0 6.573 110.3 110.3  0.0036 0.0 0.0000 857  0.0046
250 mix 6.796 114.1 114.1 0.0045 0.0 0.0000 859  0.0059

uniformly from the original square [0, 250] x [0, 250] and added to the

already existing set of demand points, in a total of » points.

Finally, the execution is stopped with a relative error (see Ref. 22) less

than 5x 107°.

For each pair (n, p), 10 uncorrelated instances of the problem were
generated according to the procedure described above, and each of them
was solved by the central-cut and the deep-cut versions of the algorithm.
Also for each value of n, 10 uncorrelated instances were generated with
mixed norms and also solved by both versions of the algorithm.

The results are summarized in Table 1a and Table 1b, where each row
corresponds to averages of 10 instances.
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Table 2a. Results for convex functions applying
central cuts.

n P T It o N
5 1.1 0.111 69.5 695 0.1

5 1.5 0.123 77.6 776 0.0

5 1.9 0.120 75.8 758 0.0

5 2.1 0.117 74.0 740 0.0

5 3.0 0.120 75.3 752 01

5 mix 0.134 84.5 845 00
25 1.1 0.457 71.0 770 0.0
25 1.5 0.537 84.8 848 0.0
25 1.9 0.468 76.8 768 0.0
25 2.1 0.522 81.2 812 00
25 3.0 0.508 80.7 80.7 0.0
25 mix 0.504 814 814 0.0
50 11 0.866 73.7 73.6 0.1
50 1.5 0.914 87 787 00
50 1.9 0.920 80.7 80.7 0.0
50 2.1 0.980 81.1 g1t 0.0
50 3.0 0.944 80.8 808 0.0
50 mix 0.933 81.8 818 00
100 1.1 1.766 771 71.1 0.0
100 1.5 1.911 82.9 829 00
100 1.9 1.846 80.3 80.3 0.0
100 2.1 1.877 81.6 816 00
100 3.0 1.934 84.1 84.1 0.0
100 mix 1.855 81.3 81.3 0.0
250 1.1 4.397 771 771 00
250 1.5 4.624 81.4 814 00
250 1.9 4.581 79.6 796 00
250 2.1 4.992 86.5 865 0.0
250 3.0 5122 88.9 89 00
250 mix 4.676 82.0 820 0.0

In Table 1a, we list the average time T taken by the central-cut version
of the algorithm in seconds of the AST Bravo, the average total number of
iterations Iz, the average number of objective cuts O, and the average number
of norm cuts N.

In Table 1b, we list the average time 7 taken by the deep-cut version
of the algorithm in seconds of the AST Bravo, the average total number of
iterations It, the average number of objective cuts O, the average depth of an
objective cut o, the average number of norm cuts N and the corresponding
average depth @y, the average number of objective cuts that were deep DO,
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Table 2b. Results for convex functions applying deep cuts.
n )2 T It 1] do N ay bpo apo

1.1 0.077 48.3 482 0.090 0.1 0.0019 308  0.1498
1.5 0.094 55.0 59.0 00769 0.0 00000 354 0.1232
1.9 0.087 54.6 546 0.0892 0.0 00000 344  0.1402
2.1 0.083 51.8 51.8 0.0947 0.0 0.0000 33.4  0.1464
3.0 0.089 55.4 553 0.0849 0.1 0.0058 340 0.1367
5 mix 0.107 66.7 66.7 0.0651 0.0 0.0000 362 0.1074

25 1.1 0.349 515 515 0.1039 0.0 0.0000 347 0.1513
25 1.5 0.399 65.6 656 0.0685 00 00000 379 0.1111
25 1.9 0.334 55.6 556 0.089% 00 00000 337 0.138]
25 2.1 0.358 60.2 60.2 0.0805 00 00000 375 0.1267
25 3.0 0.365 60.8 608 0.0791 0.0 00000 356  0.1258
25 mix 0.345 54.7 547 0.1044 0.0 00000 357 0.1558

50 1.1 0.627 53.0 529 0083 01 0.0022 342 0.1283
50 L5 0.692 574 574 0.0857 00 00000 355 0.1316
50 1.9 0.701 60.1 60.1 0.0819 00 00000 366 0.1275
50 2.1 0.705 60.2 60.2 0.0854 00 0.0000 379 0.1275
50 3.0 0.680 59.6 596 00822 00 00000 370 0.1283
50 mix 0.707 574 574 0.0931 0.0 0.0000 369 0.1452

100 1.1 1.251 55.1 550 0.0875 01 0.0022 349 0.1377
100 L5 1.387 60.8 60.8 0.0835 00 00000 369 0.1308
100 1.9 1.468 63.3 633 0.0671 0.0 0.0000 377 0.1081
100 2.1 1.354 59.3 593 0.0884 00 00000 366 0.1321
100 3.0 1.558 68.0 680 0.0627 0.0 00000 392  0.0998
100 mix 1.377 58.8 587 0.0868 0.1 00028 357  0.1368

250 1.1 3.13% 56.1 561 00785 00 0.0000 34.6 0.1277
250 1.5 3.159 56.9 569 0.0939 00 00000 374 0.1406
250 1.9 3.212 57.7 577 00892 00 00000 362 0.1368
250 2.1 3.702 67.1 671 0.0706 00 00000 386 0.1110
250 3.0 3.786 68.6 686 00749 00 00000 385 0.1176
250 mix 3.423 61.3 61.3 0.0756 0.0 0.0000 36.6 0.1224

W b b L

and the corresponding average depth (average taken within the deep objec-
tive cuts only) @po.

Notice that the seemingly small average depth may be explained by the
dependence between the value of the Lipschitz constant and the depth of
the cut. For the convex case, more encouraging results are reported in Ref.
22 with an average depth of cuts ten times bigger and about 16% reduction
in iterations and time.

In order to report some results on convex functions, we generated simi-
lar examples where the disutility function of every demand point is taken
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linear, i.e., fi(z) =w;z;. This is known as the Rawls problem, and the corre-
sponding results are given in Table 2a and Table 2b. For this problem, the
influence of the deep cuts is much more encouraging.
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