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Abstract

1. The utilisation distribution of an animal describes the relative probability of space use. It is natural to
think of it as the long-term consequence of the animal’s short-term movement decisions: it is the accumu-
lation of small displacements which, over time, gives rise to global patterns of space use. However, many
estimation methods for the utilisation distribution either assume the independence of observed locations
and ignore the underlying movement (e.g. kernel density estimation), or are based on simple Brownian
motion movement rules (e.g. Brownian bridges).
2. We introduce a new continuous-time model of animal movement, based on the Langevin diffusion.
This stochastic process has an explicit stationary distribution, conceptually analogous to the idea of the
utilisation distribution, and thus provides an intuitive framework to integrate movement and space use.
We model the stationary (utilisation) distribution with a resource selection function to link the movement
to spatial covariates, and allow inference about habitat preferences of animals.
3. Standard approximation techniques can be used to derive the pseudo-likelihood of the Langevin diffu-
sion movement model, and to estimate habitat preference and movement parameters from tracking data.
We investigate the performance of themethod on simulated data, and discuss its sensitivity to the time scale
of the sampling. We present an example of its application to tracking data of Steller sea lions (Eumetopias
jubatus).
4. Due to its continuous-time formulation, this method can be applied to irregular telemetry data. The
movement model is specified using a habitat-dependent utilisation distribution, and it provides a rigorous
framework to estimate long-term habitat selection from correlated movement data. The Langevin move-
ment model can be approximated by linear model, which allows for very fast inference. Standard tools
such as residuals can be used for model checking.

Résumé

1. Ladistributiond’utilisationde l’espace d’un animal décrit la probabilité relative d’occupationde l’espace.
Il semble assez naturel de l’envisager comme la conséquence à long terme de décision de déplacement à
court terme : c’est bien l’addition de petits déplacements qui, à long terme, fait émerger des patrons
globaux d’utilisation de l’espace. Pourtant, de nombreuses méthodes proposant d’inférer cette distribution
d’utilisation font l’hypothèse d’une indépendance entre les positions observées et ignorent le mouvement
sous-jacent (par exemple les méthodes à noyaux) ou alors utilisent une hypothèse simpliste de déplacement
telle que le mouvement Brownien (approches par pont Brownien).
2. Nous proposons un nouveaumodèle de mouvement en temps continu, construit à partir d’une diffusion
de Langevin. Ce processus admet une distribution stationnaire qui est conceptuellement identique à la
notion de distribution d’utilisation. Ce modèle permet donc de lier déplacement et utilisation de l’espace
de manière intuitive. Le modèle choisi pour la distribution stationnaire permet de prendre en compte
des covariables et donc de définir ainsi une fonction de sélection de ressources et par suite d’inférer les
préférences de l’animal en terme d’habitat.
3. Des techniques standard d’approximation permettent de définir une pseudo-vraisemblance pour le
modèle de mouvement basé sur la diffusion de Langevin. Il est donc possible d’estimer un modèle
d’habitat à partir de données de suivi. Nous évaluons la perfomance de ces méthodes sur des données
simulées et nous discutons de la sensibilité à la fréquence d’échantillonnage. Nous présentons également
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une application pour estimer les préférences d’habitats des lions de mer de Steller (Eumetopias jubatus) à
partir de données de suivi.
4. Grâce à sa formulation en temps continu, cette méthode peut être appliquée à des données acquises à
pas de temps irréguliers. Le modèle de mouvement est défini en utilisant une fonction d’utilisation qui
dépend des préférences d’habitat et propose un cadre rigoureux pour estimer une fonction de sélection de
l’habitat à partir de données de déplacement auto corrélées. Le modèle de Langevin peut être approché
par un modèle linéaire et de ce fait, benéficie de méthodes d’estimations très rapides. Des outils classiques
tels que l’analyse des résidus peuvent être utilisés pour valider le modèle proposé.

Keywords: animal movement, continuous time, resource selection, step selection, Langevin diffusion,
potential function, utilisation distribution

1 Introduction
A crucial concept in animal ecology is the utilisation distribution, "the probability density function that
gives the probability of finding an animal at a particular location" (Anderson, 1982). In recent decades,
improvements in tracking technologies have produced large amounts of animal location data, at a high
spatio-temporal resolution. Statistical methods have been developed to estimate the utilisation distribution
from telemetry observations, and to link the movements of individual animals to habitat preferences and
space use (Hooten et al., 2017).

In those approaches, a (generally two-dimensional) density function is estimated. It is of particular
interest for ecological conservation to relate the utilisation distribution to environmental covariates, to
understand how animals use space in response to their habitat (Millspaugh et al., 2006; Long et al., 2009;
Nielson and Sawyer, 2013; Zhang et al., 2014). For this purpose, the utilisation function can be formulated
in terms of spatial covariates of interest, typically using a resource selection function (Manly et al., 2002).
A resource selection function links the distribution of observed locations of animals to the distribution of
resources (or other spatial covariates), to infer habitat characteristics that are preferred (or “selected”) by
the animals. It is based on the idea that, knowing the habitat composition of a spatial unit, we can predict
its long-term utilisation. However, resource selection functions rely on the assumption that telemetry
observations are independent, which is unrealistic for high-frequency movement data.

Other popular approaches to estimate the utilisation distribution from tracking data include empirical
histograms (Nielson and Sawyer, 2013), kernel density estimators (Anderson, 1982; Worton, 1989), and
Brownian bridges (Horne et al., 2007; Kranstauber et al., 2012; Fleming et al., 2016). Similarly to resource
selection functions, a limitation of such methods is that the estimation of the utilisation distribution is
disconnected from the movement of the animal. Indeed, they often ignore the sequential structure of the
data (Anderson, 1982; Worton, 1989; Nielson and Sawyer, 2013), or make unrealistic Brownian assumptions
about the movement (Horne et al., 2007; Kranstauber et al., 2012), although see Fleming et al. (2015) for a
kernel density estimator that corrects for the autocorrelation in animal telemetry data. Those models of
space use do not estimate the utilisation distribution as a function of covariates, and two-stage approaches
are required to link space use to habitat preferences (Millspaugh et al., 2006; Péron, 2019).

It is natural to think of the utilisation distribution as a consequence of the movement, which itself
depends on the environment. Short-term movement decisions, based on habitat selection, give rise to
long-term space use. This idea motivates the development of more mechanistic approaches that link the
animal’s movement to its environment, and, ultimately, to an explicit steady-state distribution, representing
the utilisation distribution.

Following this idea, step selection functionsmodel the likelihood of a step between two points in space as
a combination of a movement kernel and a habitat selection function (Fortin et al., 2005; Forester et al., 2009;
Thurfjell et al., 2014). The parameters of a step selection function describe preference at a local (step-by-step)
scale, and strongly depend on the temporal scale of the data, and on the choice of the movement kernel.
As such, their parameters cannot directly be linked to global space use. Recently, numerical methods have
been proposed to approximate the utilisation distribution underlying a step selection function model. In
particular, Potts et al. (2014) derived an equation for the evolution of the distribution of an animal’s location
in a step selection function model which, when simulated forward, converges to the utilisation distribution.
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Similarly, Avgar et al. (2016) and Signer et al. (2017) suggested that simulations from a fitted step selection
function (as implemented by Signer et al., 2019) can be used to obtain its steady-state distribution. These
methods are useful to derive long-term space use from short-term habitat selection, but the utilisation
distribution cannot be expressed as a simple parametric function of the spatial covariates.

Hanks et al. (2015) proposed a continuous-time discrete-spacemodel to linkmovement to environmental
drivers. In their framework, the movement is considered as a continuous-timeMarkov process on a discrete
grid of spatial cells. The spatial grid is usually chosen as the grid on which the spatial covariates are
measured, and the observed locations are binned in the cells. Wilson et al. (2018) argued that the limiting
distribution of thatmovementmodel can be interpreted as a utilisation distribution, and proposed amethod
to estimate it on a discrete grid. A drawback of that approach is that it describes movement on a discrete
spatial grid, and its formulation is therefore tied to a particular space discretization.

Recently, Michelot et al. (2018) proposed a step selection model, formulated in terms of an explicit
utilisation distribution. Their approach describes individual movement as a Markov chain in continuous
space, whose stationary distribution is the utilisation distribution. In particular, they suggest that Markov
chain Monte Carlo (MCMC) algorithms, which are used to construct Markov chains with a given stationary
distribution, can be viewed as movement models.

Others have described the position of an individual animal as a diffusion process which follows the
gradient of a potential surface (Brillinger, 2010; Preisler et al., 2013; Gloaguen et al., 2018). The surface
measures the potential interest for the individual, and it can be linked to habitat variables. These approaches
offer a wide variety of flexible models to describe movement, but their link to the utilisation distribution
is unclear in the existing literature. Indeed, potential-based models are often based on diffusion processes
that are not stationary (Gloaguen et al., 2018), or lead to unrealistically simple utilisation distributions.
For example, the stationary distribution is uniform over the study region for Brownian motion movement
models (Skellam, 1951), and it is a normal distribution for the Ornstein-Uhlenbeck model (Blackwell,
1997). Including behavioural switching, with movement parameters that depend on behavioural state,
gives more flexibility in the resulting utilisation distribution, but the details depend on the relationship
between movement and behavioural parameters, and are not straightforward to interpret (Blackwell, 1997;
Harris and Blackwell, 2013).

In this work, we describe a new mechanistic movement model, continuous in time and space. We
model the animal’s position as a diffusion process with a drift towards the gradient of its stationary
(utilisation) distribution, bringing together the ideas of Brillinger (2010) and Michelot et al. (2018). As in
Wilson et al. (2018), the limiting distribution of the process is the utilisation distribution. The movement
model that we propose is based on the Langevin diffusion, which has also been used to construct an
MCMC algorithm (Roberts and Rosenthal, 1998). As this model belongs to the class of potential-based
models, inference can be performed from movement data using different estimation methods for stochastic
differential equations (SDEs), such as pseudo-likelihoodmethodswhich are simple to implement (Gloaguen
et al., 2018). We show here how this parametric model can also be linked to step selection approaches
when the utilisation distribution is parameterized as a simple function of environmental covariates. Point
estimators and confidence intervals of habitat selection parameters can easily be derived in a classical
approximated inference framework.

In Section 2, the proposed movement model is formulated in its general form, and we explain how it
can be used to model habitat selection. Section 3 describes a pseudo-likelihood method based on the Euler
discretization scheme, to estimate the habitat selection parameters from telemetry data. In Section 4, we
assess the performance of the inference methods in simulations, and we discuss conditions under which
the model parameters can be recovered. In Section 5, we present the analysis of three trajectories of Steller
sea lions (Eumetopias jubatus), with four environmental covariates as potential drivers of their movement.

2 Langevin movement model
2.1 General formulation
We denote by Xt ∈ Rd the location of an individual animal in d-dimensional space at time t ≥ 0, and
π : Rd → R its utilisation distribution (Worton, 1989). In a steady-state regime, the utilisation distribution
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is the probability density function π which satisfies

P(Xt ∈ A) =

∫
A

π(z)dz, (1)

for any area A ⊂ Rd. The two-dimensional case (d = 2) is by far the most common in movement ecology,
although the framework works for any value of d.

We propose to describe the continuous-time location process of the animal (Xt)t≥0 with a Langevin
diffusion for the density π, defined as the solution to the stochastic differential equation

dXt =
1

2
∇ log π(Xt)dt+ dWt, , X0 = x0. (2)

where Wt stands for a d-dimensional standard Brownian motion, ∇ is the gradient operator, and with
initial conditionX0 = x0. Under some easily-satisfied technical conditions (that can be found in Dalalyan,
2017), Equation 2 has a unique solution. Crucially, the solution is a continuous-time Markov process with
stationary distribution π, as defined in Equation 1 (Roberts and Tweedie, 1996). The Langevin diffusion is
thus a natural choice to link a continuous-time model of animal movement with a steady-state distribution.
Indeed, the process describes the animal’s movements as the combination of a drift towards higher values
of its utilisation distribution π (informed by the gradient of log π), and a random component given by the
Brownian motion.

In its simplest formulation, however, the Langevin diffusion cannot readily be used to model animal
movement. Indeed, the speed of the process described above is only determined by the shape of the
underlying utilisation distribution π, whereas it should be possible for two individuals to move at different
speeds on the same long-term distribution of space use. A similar issue arises in an MCMC context, where
Roberts and Rosenthal (1998) were interested in a more flexible class of Langevin-based algorithms to
improve performance. To allow for this flexibility, following Roberts and Rosenthal (1998), we introduce an
additional parameter γ2 and we define the Langevin movement model (with speed) as the solution to

dXt =
γ2

2
∇ log π(Xt)dt+ γdWt, X0 = x0. (3)

Note that if the solution to Equation 2 is denoted byX∗t and the solution to Equation 3 byXt then they are
related byXt = X∗γ2t. In the following, γ2 will be referred to as the speed parameter. We generally specify
the model in terms of γ2 (rather than γ) because it has a direct interpretation as the variance parameter
of the random Brownian motion component. Xifara et al. (2014) described an even more general process,
replacing the speed parameter in Equation 3 by a matrix. They showed that, in that case too, the stationary
distribution of the process is π. It should be noted that, although we call γ2 the speed parameter, the speed
of the process described in Equation 3 also depends on the amplitude of the local gradient of the target
distribution π. The process will tend to move more slowly in areas where π is flat than where it is steep.

Figure 1 shows two tracks simulated from the Langevin movement model on an artificial utilisation
distribution, for two different values of γ2. Although the two tracks explore space at very different speeds,
they have the same equilibrium distribution.

2.2 Including covariates
We link the utilisation distribution of the individual to spatial covariates with the standard parametric form
of resource selection functions (RSF),

π(x|β) =
exp

(∑J
j=1 βjcj(x)

)
∫

Ω
exp

(∑J
j=1 βjcj(z)

)
dz
, (4)

where cj(x) is the value of the j-th covariate at location x, Ω ⊂ Rd is the study region, and β = (β1, . . . , βJ)′

is a vector of unknown parameters. The value of βj measures the strength of the selection (attraction or
avoidance) for the j-th covariate. The denominator in the right-hand side of Equation 4 is a normalizing
constant, and is necessary to ensure that π(x|β) is a probability density function with respect to x.
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Figure 1: Left: Artificial utilisation distribution π. Right: Trajectories simulated from the Langevin movement model on π, with
two different values of the speed parameter γ2 (5 and 20), after T = 50 and T = 200 time units. Although the process with γ2 = 5
is much slower to explore space, the properties of the Langevin equation guarantee that both processes have the same stationary
distribution π.

We consider the Langevin diffusion process with the target distribution π given in Equation 4. This
defines a continuous-timemovement model, such that the stationary (utilisation) distribution of the process
is a normalized RSF. In this approach, the movement of an animal is modelled in response to the environ-
mental features in its surroundings. At any instant, the animal tends to move towards better habitat, i.e. in
the direction of the gradient of the RSF. This is formulated in continuous time, unlike other models of local
habitat selection such as step selection functions (Forester et al., 2009) or the MCMC movement model of
Michelot et al. (2018). Those models describe habitat selection at the scale of the time step of observations,
whereas the Langevin movement model captures continuous-time habitat selection, independently of the
time step of observations. In this respect, the approach we propose is similar to methods based on potential
functions (Brillinger, 2010). In potential-basedmodels, the movement process is also formulated in continu-
ous time, and it is affected by the shape of the potential function in its surroundings. Many potential-based
movement models are not stationary, so they do not capture long-term utilisation. However, Preisler et al.
(2013) described assumptions under which a potential-based model is stationary, and for which the station-
ary distribution of the movement process can be derived from the potential function. The approach that
we present can be seen as an special case of the model of Preisler et al. (2013), and we model the stationary
distribution as a function of spatial covariates.

Note that Equation 3 requires log π to be a smooth function, i.e. with continuous first-order partial
derivatives. If π is modelled by a resource selection function (Equation 4), then

∇ log π(x|β) =
J∑
j=1

βj∇cj(x). (5)

Therefore, it is supposed here that all covariates cj are differentiable, and that their gradients are continuous
at each point x and can be computed, either analytically, or by numerical approximation. In most real data
sets, the covariate functions cj aremeasured at discrete points in space. There is generally no analytical form
for the gradient, and it is necessary to interpolate the covariate fields so that its gradient can be approximated.
In Sections 4.2 and 5, bilinear interpolation is considered to obtain continuous covariate functions. In the
special case of bilinear interpolation, the gradient can be derived analytically, which greatly speeds up the
computations (Appendix D ).

As a consequence of the interpolation, the Langevin movement model is not well suited to discrete or
categorical covariates. While such a covariate field can be interpolated into a continuous function—using
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dummy indicator variables corresponding to the levels of a categorical covariate—its gradient will be zero
except between points with different levels of the covariate where the value will only depend on the chosen
interpolation method. Thus over much of the space, the movement model will simply be Brownian motion,
and the utilisation distribution will be uniform. This issue is further explored in Section 6.

3 Inference
The continuous-time location process (Xt)t≥0 of the individual is observed discretely at times t0 < t1 <
· · · < tn, and these observations are denoted by (x0,x1, . . . ,xn). Here, we assume that the locations are
observed without error, but we discuss methods to account for measurement error in Section 5 and 6. We
consider J spatial covariates c1, . . . , cJ , measured on a grid over the study region. θ denotes the vector of
all parameters of the Langevin movement model defined in Section 2, i.e. θ = (β1, . . . , βJ , γ

2). This section
describes an inference method to estimate θ, from telemetry and habitat data. We focus on one individual
animal, but the method can also be applied to obtain joint inferences from several individuals, as presented
in the case study in Section 5.

3.1 Euler approximation of the likelihood
The likelihood of the observed locations, given θ, can be expressed using the transition density of the process
(Xt)t≥0. The transition density is the probability density function ofXt+∆ givenXt = xt, and we denote it
by q∆(x|xt,θ). Following the Markov property satisfied by the Langevin diffusion process, and assuming
that the first position x0 is deterministic, the likelihood function is

L(θ;x0:n) =

n−1∏
i=0

q∆i(xi+1|xi,θ), (6)

where x0:n is shorthand for the set of observations, and ∆i = ti+1 − ti.
As discussed in Gloaguen et al. (2018), in many practical cases, there is no closed-form expression for

the density q∆ , and the likelihood L(θ;x0:n) cannot be evaluated. To circumvent this problem, pseudo-
likelihood approaches can be used as approximations. In these approaches, the diffusion process is approx-
imated by a simpler, tractable process. The intractable transition density in Equation 6 is then replaced by
that of the simpler process (usually, a Gaussian density), with moments given by a discretization scheme.
The “pseudo-likelihood” then refers to the likelihood of the approximate diffusion process (Iacus, 2009;
Gloaguen et al., 2018).

The most common pseudo-likelihood approach for discretely observed diffusion is the Euler discretiza-
tion scheme (Iacus, 2009). In the Euler discretization, the transition density of the Langevin diffusion is
approximated by the following Gaussian density between ti and ti+1, for i = 0, . . . , n− 1,

Conditionally on {Xi = xi},

Xi+1 = xi +
γ2∆i

2
∇ log π(xi|β) + εi+1, εi+1

ind∼ N
(
0, γ2∆iId

)
, (7)

where Id is the d × d identity matrix. Under this approximation, the transition density of the process can
then be written

q∆i(xi+1|xi,θ) = φ

(
xi+1

∣∣∣∣xi +
γ2∆i

2
∇ log π(xi|β); γ2∆iId

)
,

where φ(·|µ; Σ) is the p.d.f. of the multivariate normal distribution with mean µ and covariance matrix Σ.
This expression can be plugged into Equation 6 to obtain the approximate likelihood of a track x0:n.

The Euler discretization can also be used to simulate (approximately) from the Langevin movement
model, as illustrated in the simulations of Section 4. The quality of the scheme decreases for longer time
steps of simulation (Kessler et al., 2012, Chapter 1). The pseudo likelihood approach can also be used to
derive an approximate AIC, to performmodel selection, as we demonstrate in the analysis of Section 5. This
is similar to the approximate AIC described by Uchida and Yoshida (2005), although they use a different
discretization scheme.
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3.2 Maximum likelihood estimation
The pseudo-likelihood function could be optimised numerically to obtain estimates of all model parameters.
However, ifπ ismodelledwith the resource selection functionof Equation 4, thediscretisedmovementmodel
can be written in terms of a linear model, and the pseudo maximum likelihood estimate θ̂ can simply be
obtained using standard estimators for linear models. From now on, we focus on the two-dimensional case
(d = 2), for definiteness, but derivation for other values of d is straightforward.

Plugging Equation 5 into Equation 7, we can write the model in the following matrix form. Let Yi =
(Xi+1 −Xi)/

√
∆i be the two-dimensional normalized random increment of the process between ti and

ti+1, and denote

Y =



Y0,1

...
Yn−1,1

Y0,2

...
Yn−1,2


, D =

1

2



∂c1(x0)
∂z1

∂c2(x0)
∂z1

. . . ∂cJ (x0)
∂z1

...
...

∂c1(xn−1)
∂z1

∂c2(xn−1)
∂z1

. . . ∂cJ (xn−1)
∂z1

∂c1(x0)
∂z2

∂c2(x0)
∂z2

. . . ∂cJ (x0)
∂z2

...
...

∂c1(xn−1)
∂z2

∂c2(xn−1)
∂z2

. . . ∂cJ (xn−1)
∂z2

,


,

where Yi = (Yi,1, Yi,2), and where ∂/∂zi denotes the partial derivative with respect to the i-th spatial
coordinate.

Moreover, let T∆ be the (2n) × (2n) diagonal matrix with i-th and (n + i)-th diagonal terms equal to√
∆i−1, for i = 1, . . . , n, and write Z = T∆D. The matrix Z is known, since T∆ depends only on ∆i−1

(i = 1, . . . , n), andD depends only on the covariates cj , (j = 1, . . . , J). Then the Euler approximation of the
Langevin movement model can be rewritten as

Y = Zν +E, (8)

where E is a 2n-vector of independent N(0, γ2) variables, and where ν = γ2β. The estimators for ν and γ2

are derived from standard linear model theory, and their expressions are given in Appendix A. In Appendix
A, we also use linear model theory to derive confidence intervals for all the parameters of the model. Under
the Euler approximation, the computation time for β̂ and γ̂ is equivalent to that for fitting a linear regression,
thus very fast for standard data sets sizes. Another appeal of the formulation given in Equation 8 is that
standard linear model residuals can be calculated for the Langevin movement model, and used to assess
goodness-of-fit.

For the Langevin movement model based on a RSF, as defined in Section 2, the Euler approximation
therefore provides explicit estimates and confidence intervals. Note that the Euler estimator is biased due
to the approximation made in Equation 7 (see Kessler et al., 2012, Chapter 1). Therefore, both the estimate
and the confidence interval must be interpreted with caution, as they depend on the quality of the Euler
scheme. The potential use of other discretization schemes is discussed in Section 6.

3.3 The Metropolis-adjusted Langevin algorithm
The accuracy of the approximation, for the Euler scheme presented in the previous section, depends on the
time interval of discretization. Here, we propose a method to measure the discretization error, based on the
ideas of the so-called Metropolis-adjusted Langevin algorithm.

Simulations based on the Euler discretization of the Langevin diffusion process are not exact. Roberts
and Tweedie (1996) called this simulation algorithm the “unadjusted Langevin algorithm”, and they showed
that it may not converge to the correct stationary distribution π. In the context of MCMC sampling, they
described a “corrected” version of the discretized Langevin diffusion, to sample exactly from the target
distribution. They considered the transition density of the discretized Langevin process as the proposal
distribution for a Metropolis-Hastings algorithm. This “Metropolis-adjusted Langevin algorithm” (MALA)
is a special case of Metropolis-Hastings, such that the limiting distribution of samples is the correct target
distribution. We propose to use the MALA indirectly, to assess the accuracy of the Euler approximation in
the context of inference presented in Section 3.2.
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Wesuggest using the acceptance rate of theMALA tomeasure thediscrepancy between the trueLangevin

diffusion and the discretized process. As the time step of discretization decreases, the discretized process
becomes a better approximation, and the acceptance rate of the algorithm increases. In Appendix C, we
present simulations from the MALA at different time steps of discretization, and show that the acceptance
rate tends to 1 when the time step is small. This criterion becomes very valuable to assess a model fitted to
real data. In the case of real data, the time step of discretization is given by the time step of observation,
and it cannot be adjusted to improve the approximation. Then, the problem is to determine whether the
time step of observation leads to a good approximation of the process, in the context of the analysis. This
may depend on the speed of the process (i.e. the speed of movement of the animal), and on the spatial
autocorrelation structure of the target distribution (i.e. of the covariates when modelled with a RSF). In
Section 5, we use the acceptance rate of simulations from the MALA to assess a Langevin movement model
fitted to tracking data from three Steller sea lions.

4 Simulation study
In this section, we assess the performance of the inference method described in Section 3 in two simulation
scenarios. In both cases, we simulate movement tracks from the Langevin process, using a very fine Euler
discretization given in Equation 7. We simulate covariates and define an artificial utilisation distribution,
expressed as a resource selection function, as shown in Equation 4. The objective is to recover the habitat
selection parameters {β1, . . . , βJ} and the speed parameter γ2. The method presented in the previous
sections is provided in the R package Rhabit, available on Github: github.com/papayoun/Rhabit. This
simulation study, and the analysis of the next section, can be implemented using the package.

4.1 Scenario 1
We first consider a fully controlled simulation scenario, where the covariate fields are given by smooth
analytical functions. In this idealized case, the gradient of the covariate functions, and thus of the utilisation
distribution, can be calculated exactly at any point of the region of interest. The utilisation distribution π is
defined as a RSF (Equation 4) of three covariates c1, c2 and c3, given by

cj(z) = αj exp(−(z − aj)ᵀΣj(z − aj))× sin
(
ωj1(z1 − aj1)

)
× sin

(
ωj2(z1 − aj2)

)
, j = 1, 2,

c3(z) =‖ z ‖2,

where αj ,aj = (aj1, a
j
2), ωj = (ωj1, ω

j
2), and Σj = diag{σj1, σ

j
2} are known simulation parameters whose

values are given in Appendix B . For the simulations, we choose the resource selection parameters β1 = −1,
β2 = 0.5, and β3 = −0.05, and the speed parameter γ2 = 1.

The first two covariates are smooth functions, for which the gradient can easily be derived. The third
covariate is the squared distance to the centre of the map, and is used to include a weak force of attraction
towards the centre (here, the point (0, 0), somewhat related to the home range of the individual). These
three covariates functions are shown in Figure 2. The resulting utilization distribution is the one shown on
Figure 1.

Inference was performed independently on 600 data sets. Each data set was a trajectory of 300 points,
simulated from the Langevin movement model. The tracks were first generated at a fine time resolution
(∆ = 0.01), to minimise the effect of the Euler approximation, and they were then thinned to time intervals
of 0.5 time units.

We estimated all model parameters using the Euler method, presented in Section 3.2. We considered
two different settings: (i) the true analytic gradient is used in the estimation, and (ii) the covariates are
discretized on a 8× 8 regular grid, and the gradient is obtained through the interpolation of the covariates.
This second setting corresponds to the more realistic case where covariates are only observed on a discrete
grid, and the gradient needs to be approximated. The gradient approximations were performed for the
covariates c1 and c2 using standard bilinear interpolation (see Appendix D for details). The gradient of the
Euclidean distance c3 is computed exactly in both cases, as it could be in a real analysis.
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Figure 2: Artificial covariates fields for the simulation scenario of Section 4.1. The resulting utilization distribution is the one
shown on Figure 1.

Boxplots of the parameter estimates in the 600 replications are shown in Figure 3. All parameters were
correctly estimated in this benchmark scenario, even when the covariates were discretized to a coarse grid.
One can see a slight underestimation of the speed parameter. This is due to the chosen sampling time step,
as discussed in the next section.
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Figure 3: Estimates for model parameters on 600 experiments replications of scenario 1. The dotted lines show the real values used
in the simulations.

4.2 Scenario 2
We considered a second simulation scenario, with randomly-generated covariate fields on a discrete grid,
more similar to real environmental data. The main objective of this scenario is to investigate the effect of the
sampling frequency on the estimation.

We simulated two covariates c1 and c2 as random fields over the study region [−100, 100]× [−100, 100],
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with a resolution of 1. We used the function RMmatern from the R package RandomFields to generate the
random covariates (Schlather et al., 2015). We also included the squared distance to the centre of the map as
a covariate, c3, to ensure that the simulations did not go near the boundaries of the map, where the gradient
of the covariates is undefined. Then, we defined the target (utilisation) distribution as the (normalized)
RSF, with coefficients (β1, β2, β3) = (4, 2,−0.1)′. Plots of the simulated covariates, and of the utilisation
distribution used in the simulations, are shown in Figure 4.
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y

0.0005

0.0010
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π

Figure 4: Simulated covariate fields c1 and c2, and utilisation distribution obtained with β = (4, 2,−0.1)′, used in the second
simulation scenario. Note that the utilisation distribution also includes the effect of the squared distance to the centre of the map,
not shown here.

We simulated 100 trajectories from the Langevin movement model with target distribution π, and with
speed parameter γ2 = 5, at a temporal resolution of ∆ = 0.01h. (The time unit is arbitrary here, but we
include it for readability.) At this time step of simulation, the Metropolis-adjusted Langevin algorithm
has an acceptance rate around 99.5%, which indicates that the discretized process is a good approximation
of the true process (Appendix C ). We then subsampled each trajectory, for different time resolutions
∆ ∈ {0.01, 0.02, 0.05, 0.1, 0.25, 0.5, 1}, to emulate data sets obtained at different observation rates.

From each thinned data set, we kept the first 5000 locations of each of the 100 trajectories. We fitted the
Langevin movement model independently to each thinned track, using the estimators given in Section 3.2.
We evaluated the gradients of the covariates at each simulated location using bilinear interpolation. We
obtained 100 point estimates of eachmodel parameter, for each time step of observation (one for each track).
The results are displayed in Figure 5.

There was a lot of variability in the accuracy and precision of habitat selection parameter estimates. The
uncertainty on the estimates of the habitat selection parameters decreased as the time interval increased.
This is not surprising: all trajectories had the same number of locations, such that those with longer time
intervals explored a larger proportion of the study region. For example, a track of 5000 locations covers a
time period of 5000 hours if the time interval is ∆ = 1h, but it only covers 50 hours if ∆ = 0.01h. Tracks with
longer time intervals therefore covered a larger range of covariate values. Like in standard linear model
analyses, the uncertainty on the coefficients is larger when the observed range of explanatory variables in
Equation 8 is narrow.

To offset this effect, we considered a second analysis, in which all tracks covered the same period of time.
We thinned each of the 100 tracks as before, but we then kept the locations over the time period from t = 0 to
t = 500h, regardless of the time interval of observation. At a resolution of ∆ = 0.01h, each track comprised
50000 locations; for ∆ = 1h, each track comprised 500 locations. We fitted the Langevin movement model
to each track separately, for each time resolution. The estimates are shown in Figure 6.

When the tracks were all truncated to the same interval of time, the variability of the estimates of the
habitat selection parameters was the same for all time intervals. This suggests that the uncertainty on the
estimates of the habitat selection parameters depends on the extent of spatial exploration, rather than on
the number of observations. However, in this case, the variance in the estimates of the speed parameter γ2

increased as the number of observations decreased (i.e., in this case, as the time interval increased).
In both Figures 5 and 6, the estimates of β1 and β2 decreased (on average) as the time interval increased,

leading to an underestimation of the parameters for longer time intervals. This is a common problem for
the estimation of discretely observed diffusion processes, because the consistency of the estimators requires
∆ to tend towards 0 (for more details, see Kessler et al., 2012). For long time intervals, the habitat selection
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Figure 5: Boxplots of 100 estimates of the habitat selection parameters (β1, β2, β3), and of the speed parameter (γ2), for different
time intervals of observation, when the number of observations is the same for all thinned tracks. The red dotted lines show the true
values of the parameters. The x axis is on the log scale.

parameters are underestimated in absolute value, i.e. the strength of the (positive or negative) effect is
underestimated. A possible interpretation of this bias, in the context of the estimation of space use and
habitat selection, is the following. As the time interval increases, the estimated utilisation distribution
becomes flatter, to reflect our growing uncertainty about the effect of the covariates on the short-term
movement. In the extreme, for very long time intervals, we would have no information about the selection
process, and the estimated utilisation distribution would be flat, corresponding to a uniform distribution
of space use over the study region. In this respect, our approach differs from other methods of estimation
of the utilisation distribution, such as resource selection functions or kernel density estimators. With those
methods, locations collected at a coarse resolution are still informative about long-term habitat selection
and space use, and they could be used to recover the utilisation distribution. However, in the Langevin
movement model, space use is not estimated directly. Instead, the short-term habitat selection is estimated,
as captured by the effect of the local gradient of the covariates on the movement of the animal. Therefore,
since the utilisation distribution is a by-product, obtained as the stationary distribution of the short-term
movement process, the Langevin model may fail to capture both the short-term habitat selection and the
long-term space use if the time intervals between observations are too long. In the case of very coarse data,
the correlation between successive observed locationswould be small, and the RSF could be estimated using
the standard generalized linear model approach based on use-availability data (Johnson et al., 2006).

Note that, although the strength of selection was underestimated in the simulations with long time
intervals, the sign of the effect – i.e. selection or avoidance – was always estimated correctly. The estimates
of the speedparameter γ2 were very close to the true value in all simulation experimentswith 0.01 ≤ ∆ ≤ 0.1.
It seems to be underestimated for longer time intervals of observation, because the total distance travelled
by the process is underestimated when the discretization is coarse.

To investigate the performance of the method for the analysis of data sets collected at irregular time
intervals, we ran a similar experiment where the observations were thinned at random. The results were
very similar to the simulations with regular intervals, and are presented in Appendix E. These findings
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Figure 6: Boxplots of 100 estimates of the habitat selection parameters (β1, β2, β3), and of the speed parameter (γ2), for different
time intervals of observation, when the duration is the same for all thinned tracks. The red dotted lines show the true values of the
parameters. The x axis is on the log scale.

confirm that, due to its continuous-time formulation, the Langevin movement model can directly be used
on tracking data collected irregularly.

5 Illustration
In this section, we fit the Langevin movement model to a data set described byWilson et al. (2018), collected
on Steller sea lions in Alaska. The data set comprises three trajectories, obtained from three different
individuals, for a total of 2672 Argos locations. The time intervals were highly irregular, with percentiles
P0.025 = 6min, P0.5 = 1.28h, P0.975 = 17.4h. In addition to the locations, Wilson et al. (2018) provided four
spatial covariates over the study region, at a resolution of 1km: bathymetry (c1), slope (c2), distance to sites
of interest (c3), and distance to continental shelf (c4). The sites of interest were either haul-out or rookery
sites. Maps of the covariates are shown in Figure 7, and we refer the readers to Wilson et al. (2018) for more
detail about the data set.

Covariates As can be seen in Figure 7, there is strong collinearity between the distance to sites of interest
and the distance to the shelf (i.e. between c3 and c4). We derived the correlation matrix R for the four
covariates,

R =


1 0.05 −0.60 −0.61
· 1 −0.17 −0.19
· · 1 0.98
· · · 1

 .

This confirms that the correlation between the covariates c3 and c4 is high (0.98). This is because sites of
interest are rookeries and haul-out sites, which are on the island shelf. The effects of those two covariates
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Figure 7: Covariate maps for the sea lion analysis.

therefore cannot be estimated separately, and we decided to exclude the distance to the shelf c4 from the
analysis.

Data pre-processing To correct for the measurement error in the locations, and to follow the data prepara-
tion of Wilson et al. (2018), we first fitted a continuous-time correlated random walk to the tracks, using the
R package crawl (Johnson et al., 2008; Johnson and London, 2018). The continuous-time correlated random
walk is a state-space model, that can be used on irregular and noisy telemetry data. The package crawl
implements the Kalman filter for this model, to estimate the true location of an animal from observations
made with measurement error. We used the code provided byWilson et al. (2018) to fit the continuous-time
model to each track, and obtained predicted locations for the times of the observations.

Results We then fitted the Langevin movement model to the filtered tracks, using the inference method of
Section 3. To investigate inter-individual heterogeneity, we fitted a model to each track separately, and then
a joint model to the three tracks. In the following, we call the three individuals “SSL1”, “SSL2”, and “SSL3”.
In each model, we estimated four parameters: the three habitat selection parameters (β1, β2, β3), and the
speed parameter γ2. In our approach, most of the computation time is needed to evaluate the gradient of
each covariate at all observed locations, which took less than one second on a 2GHz i5 CPU. Like in the
simulation study of Section 4.2, the covariates were interpolated, so that their gradient could be evaluated at
each filtered location. The point estimates and 95% confidence intervals of all model parameters, obtained
from the equations given in Section 3.2, are presented in Table 1. For the joint model fitted to the three
trajectories, the estimated utilisation distribution, and its logarithm (for comparisonwithWilson et al., 2018),
are plotted in Figure 8.

There are clear differences in the estimated parameters for the four fitted models. To select between the
individual models and the joint model, we compared the AIC of the joint model to the sum of the AICs of
the three individual models. Here, the AIC of the joint model was 30281, and the sum of the individual
AICs was 29902, which indicates that the individual models are strongly favoured.
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Parameter SSL1 SSL2 SSL3 All individuals
β1 (×104) 3.67 (-1.96, 9.31) 8.17 (2.21, 14.1) 0.41 (-0.86, 1.68) 1.34 (0.004, 2.72)
β2 (×10) -2.77 (-15.7, 10.1) 1.81 (-7.67, 11.3) 0.67 (-1.61, 2.94) 0.76 (-1.74, 3.25)
β3 (×105) -1.14 (-2.89, 0.60) -4.49 (-8.73, -0.25) -2.38 (-3.80, -0.96) -2.06 (-3.07, -1.05)
γ2 8.97 (8.47, 9.51) 7.49 (6.84, 8.23) 18.2 (17.1, 19.3) 12.4 (11.9, 12.8)

Table 1: Estimates and 95% confidence intervals in the Steller sea lion analysis. We fitted a Langevin movement model to each
individual separately (“SSL1”, “SSL2”, and “SSL3”), and then jointly to the three individuals (“All individuals”).
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Figure 8: Estimated utilisation distribution for the sea lion analysis (left), and its logarithm, for comparison with Wilson et al.
(2018) (right). This figure shows the results of the model fitted jointly to the three individuals. The black dots are the filtered sea
lion locations.

In all models, the 95% confidence interval of the parameter β2 for the slope covariate included zero, i.e.
the covariate did not have a clear effect on the sea lions’ movement. However, for the other two covariates,
the estimated effects varied across models. The estimate of β1, corresponding to the effect of the bathymetry
covariate, was positive in the model fitted to SSL2 and in the joint model for the three tracks. This suggests
that SSL2 tended to move towards areas of shallow water. However, there was no clear effect of bathymetry
for SSL1 and SSL3. The effect of the distance to sites of interest, β3, was estimated to be negative for SSL2
and SSL3, and in the joint model. This indicates that the model captured the attraction of these two sea lions
towards the sites of interest (rookeries and haul-out sites). In the joint model and in the model for SSL2, the
estimated effects of the bathymetry and of the distance to sites of interest are consistent. Indeed, the sites of
interest are haul-out sites, or rookeries, which are located in areas of shallow water. The speed parameter
γ2 was also estimated for the three individuals, and is given in Table 1. The speed parameters of SSL1 and
SSL2 were quite similar, but the estimate for SSL3 was more than twice larger, suggesting faster movement.
The speed parameter should be interpreted with care because, in general, the actual speed of movement
also depends on the habitat selection parameters (as described in Section 2.1). Here, the estimated speed
parameters indicate that, in the absence of covariate effects (e.g. in a large area of homogeneous habitat),
SSL3 will tend to move about twice as fast than SSL1 and SSL2.

Model checking We can use linear model residuals to assess the goodness of fit. In Appendix F , we show
a quantile-quantile plot of the residuals against the normal distribution, which indicates some clear lack
of fit. Following the usual checking procedure for the linear model, we derived the predicted steps and
inspected persistent structure that was not captured by the model. The bivariate predicted steps along the
trajectory of the seal SSL2 are shown in Appendix F .

From the map of the predicted steps, we can see that the model fails to predict long steps, which occur
when the animal is at sea (e.g. in transit between sites of interest). This may be due to the lack of flexibility
of the model to capture phases of movement with different speeds. The speed parameter γ2 is assumed to
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be constant in time so, even if it captures the average speed of movement, it may fail to account for either
very slow or very fast movement. This motivates a more flexible formulation for the speed parameter,
for instance a state-switching model where each state i is characterised by a different parameter γ2

i . This
extension would not be straightforward to implement in continuous time, however, and would lead to a
more complex inference framework.

We also see (Figure S3 in Appendix F) that the predicted steps always point towards shallow water or
towards the closest site of interest, because their direction is determined by the estimated habitat selection
parameters. As a result, the model fails to predict displacements away from sites of interest, for example.
This suggests that, to fully understand the drivers of the sea lion movements, additional covariates may
need to be included in the analysis.

Euler approach validity As illustrated in the simulations of Section 4.2, we computed our MALA index
by bootstrap to assess the validity of the Euler method. Overall, the acceptance rate of the algorithm
ranged between 93.2% and 99.1%, with a mean of 97.4%, which seems to indicate that the application of the
Langevin movement model is appropriate for this data set.

6 Discussion
This work introduces a new model of animal movement, based on the Langevin diffusion process, that
integrates the movement with space use and habitat selection. Our model follows the idea of potential-
based movement models proposed by Preisler et al. (2004), and it is explicitly connected to the utilisation
distribution of the individual, from stationarity properties of the Langevin diffusion process. If spatial
covariates are available, the utilisation distribution can be modelled with a resource selection function,
embedded in the movement process, to infer habitat preferences. The Langevin movement model therefore
describes animal movement in response to spatial covariates, i.e. step selection. Pseudo-likelihood methods
can be used to obtain estimates of the habitat selection parameters in a linear model framework, fromwhich
an estimated utilisation distribution can be computed. The Langevin movement model is formulated in
continuous time, and it can deal with location data collected at irregular time intervals, without the need to
interpolate them. Similarly, because it models movement in continuous space (unlike the method presented
by Wilson et al. 2018), the interpretation of the results is not tied to a particular space discretization.

In this paper, we used the Euler discretization scheme to obtain pseudo maximum likelihood estima-
tors. This scheme is the most widely-used method to carry out inference for discretely-observed diffusion
processes, when the transition density is not analytically tractable (see Preisler et al., 2004; Brillinger, 2010;
Russell et al., 2018, for applications in ecology). There exist other pseudo-likelihood approaches, and
Gloaguen et al. (2018) argued that better inferences could be obtained with more refined schemes. In partic-
ular, they found that the Ozaki discretization provided more reliable results in their applications. However,
the Ozaki scheme requires the evaluation of the partial derivatives of the drift, i.e. the (partial) second
derivatives of log π in the Langevin movement model. To compare the Euler and the Ozaki scheme, we
repeated the simulation study of Section 4.1, using the Ozaki scheme for the estimation (the results are not
shown here), and found out that the theoretical advantages of the Ozaki scheme were counterbalanced by
the need of a second-order interpolation, and the Euler scheme providedmore reliable estimates. Therefore,
in the context of the Langevin movement model, the Euler scheme is typically more robust as it requires
fewer numerical approximations.

In the case study of Section 5, we used a two-stage approach to deal with the measurement error. We
first fitted a state-space model, the continuous-time correlated random walk, to filter the Argos locations.
Then, we fitted the Langevin movement model to the filtered tracks. There are several drawbacks to the
two-stage approach. Indeed, it is difficult to propagate the uncertainty from the measurement error to the
final parameter estimates (although multiple imputation could be used; see e.g. Scharf et al., 2017). Besides,
the two stages are not consistent, because the first stage ignores the environmental effects that are estimated
in the second stage. To avoid this issue, the two steps could be integrated into a state-space model that
incorporatesmeasurement error directly on top of the Langevinmovement process. The state equation of the
full model is given by the transition density of the Langevin movement model, or a discretization of it (like
the one given in Equation 7). A natural choice for the observation equation would be X̃i = Xi + ηi, where
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X̃i is the noisy observed location, Xi is the true location, and ηi ∼ N(0, σ2

obsI2) models the measurement
error. Under the Euler scheme, the approximate transition density is normal, and a Kalman filter can be
used to compute the pseudo-likelihood of this hierarchical state-space model.

As in Michelot et al. (2018), the approach taken here is fundamentally a local one. One consequence of
this, touched on in Section 2.2, is that within regions where covariates are constant, there is no selection, as
the drift term in Equation 3 is zero. This is not necessarily unrealistic; in fact it follows from the assumption
that the utilisation density at a point depends only on the values of covariates at that point, as in Equation 4.
However, it does suggest a more general framework, in which the movement model is based on smoothed
versions of covariates, with the spatial scale of smoothing acting as a proxy for the perception or decision-
making scale of the animal, as distinct from the movement scale. However, the estimation of this unknown
spatial scale in this more general model should be addressed.

The inspection of the residuals in the sea lion case study suggested that a potential improvement would
be to allow the speed parameter γ2 to vary in time. This would not break the stationarity property of the
Langevin movement model, as long as γ2 does not depend on the utilisation distribution π at the current
location. However, the linear model formulation would not apply in that case. In the analysis of Section 5,
we found that habitat selection and movement parameters varied between individuals. Another extension
of the presented work would be to incorporate a random effect in the model, to account for individual
deviation from the overall population model. Using the Euler scheme, this extension could be written as a
mixed linear model.
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