252 research outputs found

    The Genome of the Blind Soil-Dwelling and Ancestrally Wingless Dipluran Campodea augens: A Key Reference Hexapod for Studying the Emergence of Insect Innovations.

    Get PDF
    The dipluran two-pronged bristletail Campodea augens is a blind ancestrally wingless hexapod with the remarkable capacity to regenerate lost body appendages such as its long antennae. As sister group to Insecta (sensu stricto), Diplura are key to understanding the early evolution of hexapods and the origin and evolution of insects. Here we report the 1.2-Gb draft genome of C. augens and results from comparative genomic analyses with other arthropods. In C. augens, we uncovered the largest chemosensory gene repertoire of ionotropic receptors in the animal kingdom, a massive expansion that might compensate for the loss of vision. We found a paucity of photoreceptor genes mirroring at the genomic level the secondary loss of an ancestral external photoreceptor organ. Expansions of detoxification and carbohydrate metabolism gene families might reflect adaptations for foraging behavior, and duplicated apoptotic genes might underlie its high regenerative potential. The C. augens genome represents one of the key references for studying the emergence of genomic innovations in insects, the most diverse animal group, and opens up novel opportunities to study the under-explored biology of diplurans

    Quantitative backscattered electron imaging of bone using a thermionic or a field emission electron source

    Get PDF
    Quantitative backscattered electron imaging is an established method to map mineral content distributions in bone and to determine the bone mineralization density distribution (BMDD). The method we applied was initially validated for a scanning electron microscope (SEM) equipped with a tungsten hairpin cathode (thermionic electron emission) under strongly defined settings of SEM parameters. For several reasons, it would be interesting to migrate the technique to a SEM with a field emission electron source (FE-SEM), which, however, would require to work with different SEM parameter settings as have been validated for DSM 962. The FE-SEM has a much better spatial resolution based on an electron source size in the order of several 100 nanometers, corresponding to an about 105 to 106 times smaller source area compared to thermionic sources. In the present work, we compare BMDD between these two types of instruments in order to further validate the methodology. We show that a transition to higher pixel resolution (1.76, 0.88, and 0.57 μm) results in shifts of the BMDD peak and BMDD width to higher values. Further the inter-device reproducibility of the mean calcium content shows a difference of up to 1 wt% Ca, while the technical variance of each device can be reduced to ±0.17 wt% Ca. Bearing in mind that shifts in calcium levels due to diseases, e.g., high turnover osteoporosis, are often in the range of 1 wt% Ca, both the bone samples of the patients as well as the control samples have to be measured on the same SEM device. Therefore, we also constructed new reference BMDD curves for adults to be used for FE-SEM data comparison

    Genomic signatures accompanying the dietary shift to phytophagy in polyphagan beetles.

    Get PDF
    The diversity and evolutionary success of beetles (Coleoptera) are proposed to be related to the diversity of plants on which they feed. Indeed, the largest beetle suborder, Polyphaga, mostly includes plant eaters among its approximately 315,000 species. In particular, plants defend themselves with a diversity of specialized toxic chemicals. These may impose selective pressures that drive genomic diversification and speciation in phytophagous beetles. However, evidence of changes in beetle gene repertoires driven by such interactions remains largely anecdotal and without explicit hypothesis testing. We explore the genomic consequences of beetle-plant trophic interactions by performing comparative gene family analyses across 18 species representative of the two most species-rich beetle suborders. We contrast the gene contents of species from the mostly plant-eating suborder Polyphaga with those of the mainly predatory Adephaga. We find gene repertoire evolution to be more dynamic, with significantly more adaptive lineage-specific expansions, in the more speciose Polyphaga. Testing the specific hypothesis of adaptation to plant feeding, we identify families of enzymes putatively involved in beetle-plant interactions that underwent adaptive expansions in Polyphaga. There is notable support for the selection hypothesis on large gene families for glutathione S-transferase and carboxylesterase detoxification enzymes. Our explicit modeling of the evolution of gene repertoires across 18 species identifies putative adaptive lineage-specific gene family expansions that accompany the dietary shift towards plants in beetles. These genomic signatures support the popular hypothesis of a key role for interactions with plant chemical defenses, and for plant feeding in general, in driving beetle diversification

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings

    Get PDF
    The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects

    Improved Phylogenetic Analyses Corroborate a Plausible Position of Martialis heureka in the Ant Tree of Life

    Get PDF
    Martialinae are pale, eyeless and probably hypogaeic predatory ants. Morphological character sets suggest a close relationship to the ant subfamily Leptanillinae. Recent analyses based on molecular sequence data suggest that Martialinae are the sister group to all extant ants. However, by comparing molecular studies and different reconstruction methods, the position of Martialinae remains ambiguous. While this sister group relationship was well supported by Bayesian partitioned analyses, Maximum Likelihood approaches could not unequivocally resolve the position of Martialinae. By re-analysing a previous published molecular data set, we show that the Maximum Likelihood approach is highly appropriate to resolve deep ant relationships, especially between Leptanillinae, Martialinae and the remaining ant subfamilies. Based on improved alignments, alignment masking, and tree reconstructions with a sufficient number of bootstrap replicates, our results strongly reject a placement of Martialinae at the first split within the ant tree of life. Instead, we suggest that Leptanillinae are a sister group to all other extant ant subfamilies, whereas Martialinae branch off as a second lineage. This assumption is backed by approximately unbiased (AU) tests, additional Bayesian analyses and split networks. Our results demonstrate clear effects of improved alignment approaches, alignment masking and data partitioning. We hope that our study illustrates the importance of thorough, comprehensible phylogenetic analyses using the example of ant relationships

    Combination of Nanoindentation and Quantitative Backscattered Electron Imaging Revealed Altered Bone Material Properties Associated with Femoral Neck Fragility

    Get PDF
    Osteoporotic fragility fractures were hypothesized to be related to changes in bone material properties and not solely to reduction in bone mass. We studied cortical bone from the superior and inferior sectors of whole femoral neck sections from five female osteoporotic hip fracture cases (74–92 years) and five nonfractured controls (75–88 years). The typical calcium content (CaPeak) and the mineral particle thickness parameter (T) were mapped in large areas of the superior and inferior regions using quantitative backscattered electron imaging (qBEI) and scanning small-angle X-ray scattering, respectively. Additionally, indentation modulus (E) and hardness (H) (determined by nanoindentation) were compared at the local level to the mineral content (CaInd) at the indent positions (obtained from qBEI). CaPeak (−2.2%, P = 0.002), CaInd (−1.8%, P = 0.048), E (−5.6%, P = 0.040), and H (−6.0%, P = 0.016) were significantly lower for the superior compared to the inferior region. Interestingly, CaPeak as well as CaInd were also lower (−2.6%, P = 0.006, and –3.7%, P = 0.002, respectively) in fracture cases compared to controls, while E and H did not show any significant reduction. T values were in the normal range, independent of region (P = 0.181) or fracture status (P = 0.551). In conclusion, it appears that the observed femoral neck fragility is associated with a reduced mineral content, which was not accompanied by a reduction in stiffness and hardness of the bone material. This pilot study suggests that a stiffening process in the organic matrix component contributes to bone fragility independently of mineral content

    Molecular developmental evidence for a subcoxal origin of pleurites in insects and identity of the subcoxa in the gnathal appendages

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The attached file is the published version of the article

    The taming of an impossible child: a standardized all-in approach to the phylogeny of Hymenoptera using public database sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enormous molecular sequence data have been accumulated over the past several years and are still exponentially growing with the use of faster and cheaper sequencing techniques. There is high and widespread interest in using these data for phylogenetic analyses. However, the amount of data that one can retrieve from public sequence repositories is virtually impossible to tame without dedicated software that automates processes. Here we present a novel bioinformatics pipeline for downloading, formatting, filtering and analyzing public sequence data deposited in GenBank. It combines some well-established programs with numerous newly developed software tools (available at <url>http://software.zfmk.de/</url>).</p> <p>Results</p> <p>We used the bioinformatics pipeline to investigate the phylogeny of the megadiverse insect order Hymenoptera (sawflies, bees, wasps and ants) by retrieving and processing more than 120,000 sequences and by selecting subsets under the criteria of compositional homogeneity and defined levels of density and overlap. Tree reconstruction was done with a partitioned maximum likelihood analysis from a supermatrix with more than 80,000 sites and more than 1,100 species. In the inferred tree, consistent with previous studies, "Symphyta" is paraphyletic. Within Apocrita, our analysis suggests a topology of Stephanoidea + (Ichneumonoidea + (Proctotrupomorpha + (Evanioidea + Aculeata))). Despite the huge amount of data, we identified several persistent problems in the Hymenoptera tree. Data coverage is still extremely low, and additional data have to be collected to reliably infer the phylogeny of Hymenoptera.</p> <p>Conclusions</p> <p>While we applied our bioinformatics pipeline to Hymenoptera, we designed the approach to be as general as possible. With this pipeline, it is possible to produce phylogenetic trees for any taxonomic group and to monitor new data and tree robustness in a taxon of interest. It therefore has great potential to meet the challenges of the phylogenomic era and to deepen our understanding of the tree of life.</p

    Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths.

    Get PDF
    Butterflies and moths (Lepidoptera) are one of the major superradiations of insects, comprising nearly 160,000 described extant species. As herbivores, pollinators, and prey, Lepidoptera play a fundamental role in almost every terrestrial ecosystem. Lepidoptera are also indicators of environmental change and serve as models for research on mimicry and genetics. They have been central to the development of coevolutionary hypotheses, such as butterflies with flowering plants and moths' evolutionary arms race with echolocating bats. However, these hypotheses have not been rigorously tested, because a robust lepidopteran phylogeny and timing of evolutionary novelties are lacking. To address these issues, we inferred a comprehensive phylogeny of Lepidoptera, using the largest dataset assembled for the order (2,098 orthologous protein-coding genes from transcriptomes of 186 species, representing nearly all superfamilies), and dated it with carefully evaluated synapomorphy-based fossils. The oldest members of the Lepidoptera crown group appeared in the Late Carboniferous (∼300 Ma) and fed on nonvascular land plants. Lepidoptera evolved the tube-like proboscis in the Middle Triassic (∼241 Ma), which allowed them to acquire nectar from flowering plants. This morphological innovation, along with other traits, likely promoted the extraordinary diversification of superfamily-level lepidopteran crown groups. The ancestor of butterflies was likely nocturnal, and our results indicate that butterflies became day-flying in the Late Cretaceous (∼98 Ma). Moth hearing organs arose multiple times before the evolutionary arms race between moths and bats, perhaps initially detecting a wide range of sound frequencies before being co-opted to specifically detect bat sonar. Our study provides an essential framework for future comparative studies on butterfly and moth evolution
    corecore