1,089 research outputs found
Monopolelike probes for quantitative magnetic force microscopy: calibration and application
A local magnetization measurement was performed with a Magnetic Force
Microscope (MFM) to determine magnetization in domains of an exchange coupled
[Co/Pt]/Co/Ru multilayer with predominant perpendicular anisotropy. The
quantitative MFM measurements were conducted with an iron filled carbon
nanotube tip, which is shown to behave like a monopole. As a result we
determined an additional in-plane magnetization component of the multilayer,
which is explained by estimating the effective permeability of the sample
within the \mu*-method.Comment: 3 pages, 3 figure
Hydrogen-based Energy Storage (IEA-HIA Task 32)
The International Energy Agency (IEA) in its Hydrogen Implementation Agreement (HIA) conducts the core R&D work in Tasks byMember Experts.Task 32 'Hydrogen-based Energy Storage' addresses solutions for energy storage based on hydrogen. Task 32 is the largest international collaboration in this field involving over 50 experts from 18 countries. Currently, the task consists of six working groups, porous materials, magnesium-based hydrogen and energy storage materials, complex and liquid hydrides, electrochemical storage of energy, heat storage and hydrogen storage systems for mobile applications
Structure of the axonal surface recognition molecule neurofascin and its relationship to a neural subgroup of the immunoglobulin superfamily
The chick axon-associated surface glycoprotein neurofascin is implicated in axonal growth and fasciculation as revealed by antibody perturbation experiments. Here we report the complete cDNA sequence of neurofascin. It is composed of four structural elements: At the NH2 terminus neurofascin contains six Ig-like motifs of the C2 subcategory followed by four fibronectin type III (FNIII)-related repeats. Between the FNIII-like repeats and the plasma membrane spanning region neurofascin contains a domain 75-amino acid residues-long rich in proline, alanine and threonine which might be the target of extensive O-linked glycosylation. A transmembrane segment is followed by a 113-amino acid residues-long cytoplasmic domain. Sequence comparisons indicate that neurofascin is most closely related to chick Nr-CAM and forms with L1 (Ng-CAM) and Nr-CAM a subgroup within the vertebrate Ig superfamily. Sequencing of several overlapping cDNA probes reveals interesting heterogeneities throughout the neurofascin polypeptide. Genomic Southern blots analyzed with neurofascin cDNA clones suggest that neurofascin is encoded by a single gene and its pre-mRNA might be therefore alternatively spliced. Northern blot analysis with domain specific probes showed that neurofascin mRNAs of about 8.5 kb are expressed throughout development in embryonic brain but not in liver. Isolation of neurofascin by immunoaffinity chromatography results in several molecular mass components. To analyze their origin the amino-terminal sequences of several neurofascin components were determined. The NH2-terminal sequences of the 185, 160, and 110-135 kD components are all the same as the NH2 termini predicted by the cDNA sequence, whereas the other neurofascin components start with a sequence found in a putative alternatively spliced segment between the Ig- and FNIII-like part indicating that they are derived by proteolytic cleavage. A combination of enzymatic and chemical deglycosylation procedures and the analysis of peanut lectin binding reveals O- and N-linked carbohydrates on neurofascin components which might generate additional heterogeneity
First detection of [N II] 205 micrometer absorption in interstellar gas
We present high resolution [NII] 205 micrometer ^3P_1-^3P_0 spectra obtained
with Herschel-HIFI towards a small sample of far-infrared bright star forming
regions in the Galactic plane: W31C (G10.6-0.4), W49N (G43.2-0.1), W51
(G49.5-0.4), and G34.3+0.1. All sources display an emission line profile
associated directly with the HII regions themselves. For the first time we also
detect absorption of the [NII] 205 micrometer line by extended low-density
foreground material towards W31C and W49N over a wide range of velocities. We
attribute this absorption to the warm ionised medium (WIM) and find
N(N^+)\approx 1.5x10^17 cm^-2 towards both sources. This is in agreement with
recent Herschel-HIFI observations of [CII] 158 micrometer, also observed in
absorption in the same sight-lines, if \approx7-10 % of all C^+ ions exist in
the WIM on average. Using an abundance ratio of [N]/[H] = 6.76x10^-5 in the gas
phase we find that the mean electron and proton volume densities are ~0.1-0.3
cm^-3 assuming a WIM volume filling fraction of 0.1-0.4 with a corresponding
line-of-sight filling fraction of 0.46-0.74. A low density and a high WIM
filling fraction are also supported by RADEX modelling of the [NII] 205
micrometer absorption and emission together with visible emission lines
attributed mainly to the WIM. The detection of the 205 micrometer line in
absorption emphasises the importance of a high spectral resolution, and also
offers a new tool for investigation of the WIM.Comment: 7 pages, 4 figures, accepted for publication in Astronomy &
Astrophysics, 11 June 201
Detection of a dense clump in a filament interacting with W51e2
In the framework of the Herschel/PRISMAS Guaranteed Time Key Program, the
line of sight to the distant ultracompact HII region W51e2 has been observed
using several selected molecular species. Most of the detected absorption
features are not associated with the background high-mass star-forming region
and probe the diffuse matter along the line of sight. We present here the
detection of an additional narrow absorption feature at ~70 km/s in the
observed spectra of HDO, NH3 and C3. The 70 km/s feature is not uniquely
identifiable with the dynamic components (the main cloud and the large-scale
foreground filament) so-far identified toward this region. The narrow
absorption feature is similar to the one found toward low-mass protostars,
which is characteristic of the presence of a cold external envelope. The
far-infrared spectroscopic data were combined with existing ground-based
observations of 12CO, 13CO, CCH, CN, and C3H2 to characterize the 70 km/s
component. Using a non-LTE analysis of multiple transitions of NH3 and CN, we
estimated the density (n(H2) (1-5)x10^5 cm^-3) and temperature (10-30 K) for
this narrow feature. We used a gas-grain warm-up based chemical model with
physical parameters derived from the NH3 data to explain the observed
abundances of the different chemical species. We propose that the 70 km/s
narrow feature arises in a dense and cold clump that probably is undergoing
collapse to form a low-mass protostar, formed on the trailing side of the
high-velocity filament, which is thought to be interacting with the W51 main
cloud. While the fortuitous coincidence of the dense clump along the line of
sight with the continuum-bright W51e2 compact HII region has contributed to its
non-detection in the continuum images, this same attribute makes it an
appropriate source for absorption studies and in particular for ice studies of
star-forming regions.Comment: Accepted for publication in A&
Single flux quantum circuits with damping based on dissipative transmission lines
We propose and demonstrate the functioning of a special Rapid Single Flux
Quantum (RSFQ) circuit with frequency-dependent damping. This damping is
achieved by shunting individual Josephson junctions by pieces of open-ended RC
transmission lines. Our circuit includes a toggle flip-flop cell, Josephson
transmission lines transferring single flux quantum pulses to and from this
cell, as well as DC/SFQ and SFQ/DC converters. Due to the desired
frequency-dispersion in the RC line shunts which ensures sufficiently low noise
at low frequencies, such circuits are well-suited for integrating with the
flux/phase Josephson qubit and enable its efficient control.Comment: 6 pages incl. 6 figure
The chemistry of C3 & Carbon Chain Molecules in DR21(OH)
(Abridged) We have observed velocity resolved spectra of four ro-vibrational
far-infrared transitions of C3 between the vibrational ground state and the
low-energy nu2 bending mode at frequencies between 1654--1897 GHz using HIFI on
board Herschel, in DR21(OH), a high mass star forming region. Several
transitions of CCH and c-C3H2 have also been observed with HIFI and the IRAM
30m telescope. A gas and grain warm-up model was used to identify the primary
C3 forming reactions in DR21(OH). We have detected C3 in absorption in four
far-infrared transitions, P(4), P(10), Q(2) and Q(4). The continuum sources MM1
and MM2 in DR21(OH) though spatially unresolved, are sufficiently separated in
velocity to be identified in the C3 spectra. All C3 transitions are detected
from the embedded source MM2 and the surrounding envelope, whereas only Q(4) &
P(4) are detected toward the hot core MM1. The abundance of C3 in the envelope
and MM2 is \sim6x10^{-10} and \sim3x10^{-9} respectively. For CCH and c-C3H2 we
only detect emission from the envelope and MM1. The observed CCH, C3, and
c-C3H2 abundances are most consistent with a chemical model with
n(H2)\sim5x10^{6} cm^-3 post-warm-up dust temperature, T_max =30 K and a time
of \sim0.7-3 Myr. Post warm-up gas phase chemistry of CH4 released from the
grain at t\sim 0.2 Myr and lasting for 1 Myr can explain the observed C3
abundance in the envelope of DR21(OH) and no mechanism involving
photodestruction of PAH molecules is required. The chemistry in the envelope is
similar to the warm carbon chain chemistry (WCCC) found in lukewarm corinos.
The observed lower C3 abundance in MM1 as compared to MM2 and the envelope
could be indicative of destruction of C3 in the more evolved MM1. The timescale
for the chemistry derived for the envelope is consistent with the dynamical
timescale of 2 Myr derived for DR21(OH) in other studies.Comment: 11 Pages, 6 figures, accepted for publication in A&
Gas-grain models for interstellar anion chemistry
Long-chain hydrocarbon anions CnH- (n=4, 6, 8) have recently been found to be
abundant in a variety of interstellar clouds. In order to explain their large
abundances in the denser (prestellar/protostellar) environments, new chemical
models are constructed that include gas-grain interactions. Models including
accretion of gas-phase species onto dust grains and cosmic-ray-induced
desorption of atoms are able to reproduce the observed anion-to-neutral ratios,
as well as the absolute abundances of anionic and neutral carbon chains, with a
reasonable degree of accuracy. Due to their destructive effects, the depletion
of oxygen atoms onto dust results in substantially greater polyyne and anion
abundances in high-density gas (with n_{H_2} >~ 10^5 cm^{-3}). The large
abundances of carbon-chain-bearing species observed in the envelopes of
protostars such as L1527 can thus be explained without the need for warm
carbon-chain chemistry. The C6H- anion-to-neutral ratio is found to be most
sensitive to the atomic O and H abundances and the electron density. Therefore,
as a core evolves, falling atomic abundances and rising electron densities are
found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray
desorption of atoms in high-density models delays freeze-out, which results in
a more temporally-stable anion-to-neutral ratio, in better agreement with
observations. Our models include reactions between oxygen atoms and
carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O and
HC7O, the abundances of which depend on the assumed branching ratios for
associative electron detachment
Role of 2-5A-Dependent RNase-L in Senescence and Longevity
Senescence is a permanent growth arrest that restricts the lifespan of primary cells in culture, and represents an in vitro model for aging. Senescence functions as a tumor suppressor mechanism that can be induced independent of replicative crisis by diverse stress stimuli. RNase-L mediates antiproliferative activities and functions as a tumor suppressor in prostate cancer, therefore, we examined a role for RNase-L in cellular senescence and aging. Ectopic expression of RNase-L induced a senescent morphology, a decrease in DNA synthesis, an increase in senescence-associated -galactosidase activity, and accelerated replicative senescence. In contrast, senescence was retarded in RNase-L-null fibroblasts compared with wild-type fibroblasts. Activation of endogenous RNase-L by 2-5A transfection induced distinct senescent and apoptotic responses in parental and Simian virus 40-transformed WI38 fibroblasts, respectively, demonstrating cell type specific differences in the antiproliferative response to RNase-L activation. Replicative senescence is a model for in vivo aging; therefore, genetic disruption of senescence effectors may impact lifespan. RNase-L-/- mice survived 31.7% (P\u3c0.0001) longer than strain-matched RNase-L+/+ mice providing evidence for a physiological role for RNase-L in aging. These findings identify a novel role for RNase-L in senescence that may contribute to its tumor suppressive function and to the enhanced longevity of RNase-L-/- mice
- âŠ