593 research outputs found

    A Reverse Dynamical Investigation of the Catastrophic Wood-Snow Avalanche of 18 January 2017 at Rigopiano, Gran Sasso National Park, Italy

    Get PDF
    On 18 January 2017 a catastrophic avalanche destroyed the Rigopiano Gran Sasso Resort & Wellness (Rigopiano Hotel) in the Gran Sasso National Park in Italy, with 40 people trapped and a death toll of 29. This article describes the location of the disaster and the general meteorological scenario, with field investigations to provide insight on the avalanche dynamics and its interaction with the hotel buildings. The data gathered in situ suggest that the avalanche was a fluidized dry snow avalanche, which entrained a sligthtly warmer snow cover along the path and reached extremely long runout distances with braking effect from mountain forests. The avalanche that reached the Rigopiano area was a “wood-snow” avalanche—a mixture of snow and uprooted and crushed trees, rocks, and other debris. There were no direct eyewitnesses at the event, and a quick post-event survey used a numerical model to analyze the dynamics of the event to estimate the pressure, velocity, and direction of the natural flow and the causes for the destruction of the hotel. Considering the magnitude and the damage caused by the event, the avalanche was at a high to very high intensity scale

    Three-dimensional shielding effects on charged particle fluences measured in the P0006 experiment of LDEF

    Get PDF
    Three-dimensional shielding effects on cosmic ray charged particle fluences were measured with plastic nuclear track detectors in the P0006 experiment on Long Duration Exposure Facility (LDEF). The azimuthal and polar angle distributions of the galactic cosmic ray particles (mostly relativistic iron) were measured in the main stack and in four side stacks of the P0006 experiment, located on the west end of the LDEF satellite. A shadowing effect of the shielding of the LDEF satellite is found. Total fluence of stopping protons was measured as a function of the position in the main and side stacks of the P0006 experiment. Location dependence of total track density is explained by the three-dimensional shielding model of the P0006 stack. These results can be used to validate 3D mass model and transport code calculations and also for predictions of the outer radiation environment for the Space Station Freedom

    Heritabilities and Genetic Correlations of Body Condition Score and Muscularity with Productive Traits and their Trend Functions in Italian Simmental Cattle

    Get PDF
    With the aim to study the genetics of energy and muscle balance in the Italian Simmental breed, the objectives of this study were: i) the estimation of the genetic parameters for body condition score (BCS) and muscularity (MU) score; ii) the estimation of genetic correlations of BCS and MU with productive traits; iii) the estimation of the expected pattern of BCS and MU over lactation. A total of 47,839 records of first-parity lactating cows, collected from 1999 to 2007 in 2794 herds, were used. Two-trait animal models were analyzed using restricted maximum likelihood (REML) procedures to estimate (co)variance components. The expected patterns of BCS and MU along the lactation of first parity cows were estimated from the solutions of DIM fixed effect obtained from an univariate mixed model for both the traits. The heritability estimated was 0.18 for BCS, 0.38 for MU, and ranged from 0.13 to 0.18 for yield traits. The genetic correlations between BCS, MU and yield traits were negative (-0.17 to -0.63). The genetic correlation between BCS and MU was strongly positive (0.88), indicating that cows that genetically tend to have high BCS are more likely to have high values of MU. The genetic parameters estimated suggested that selection for BCS and MU in dual purpose breeds may be possible, and BCS may indirectly improve MU. The expected patterns for BCS and MU showed the trend of these two traits along the lactation and can help farmers in planning the best management of the lactating cows

    High Frame-rate Imaging Based Photometry, Photometric Reduction of Data from Electron-multiplying Charge Coupled Devices (EMCCDs)

    Get PDF
    The EMCCD is a type of CCD that delivers fast readout times and negligible readout noise, making it an ideal detector for high frame rate applications which improve resolution, like lucky imaging or shift-and-add. This improvement in resolution can potentially improve the photometry of faint stars in extremely crowded fields significantly by alleviating crowding. Alleviating crowding is a prerequisite for observing gravitational microlensing in main sequence stars towards the galactic bulge. However, the photometric stability of this device has not been assessed. The EMCCD has sources of noise not found in conventional CCDs, and new methods for handling these must be developed. We aim to investigate how the normal photometric reduction steps from conventional CCDs should be adjusted to be applicable to EMCCD data. One complication is that a bias frame cannot be obtained conventionally, as the output from an EMCCD is not normally distributed. Also, the readout process generates spurious charges in any CCD, but in EMCCD data, these charges are visible as opposed to the conventional CCD. Furthermore we aim to eliminate the photon waste associated with lucky imaging by combining this method with shift-and-add. A simple probabilistic model for the dark output of an EMCCD is developed. Fitting this model with the expectation-maximization algorithm allows us to estimate the bias, readout noise, amplification, and spurious charge rate per pixel and thus correct for these phenomena. To investigate the stability of the photometry, corrected frames of a crowded field are reduced with a PSF fitting photometry package, where a lucky image is used as a reference. We find that it is possible to develop an algorithm that elegantly reduces EMCCD data and produces stable photometry at the 1% level in an extremely crowded field.Comment: Submitted to Astronomy and Astrophysic

    MuMax: a new high-performance micromagnetic simulation tool

    Get PDF
    We present MuMax, a general-purpose micromagnetic simulation tool running on Graphical Processing Units (GPUs). MuMax is designed for high performance computations and specifically targets large simulations. In that case speedups of over a factor 100x can easily be obtained compared to the CPU-based OOMMF program developed at NIST. MuMax aims to be general and broadly applicable. It solves the classical Landau-Lifshitz equation taking into account the magnetostatic, exchange and anisotropy interactions, thermal effects and spin-transfer torque. Periodic boundary conditions can optionally be imposed. A spatial discretization using finite differences in 2 or 3 dimensions can be employed. MuMax is publicly available as open source software. It can thus be freely used and extended by community. Due to its high computational performance, MuMax should open up the possibility of running extensive simulations that would be nearly inaccessible with typical CPU-based simulators.Comment: To be published in JMM

    Genetic parameters for casein and urea content in the Italian Brown Swiss dairy cattle

    Get PDF
    A total of 137,753 test day records of 20,745 Italian Brown Swiss dairy cows from 26 provinces of Italy were used to estimate heritability for casein and urea content in milk and their genetic correlations with other production traits and milk somatic cell score. Milk component values were obtained by Fourier Transformed Infrared (IR) Spectroscopy from milk samples collected during national routine recording and were analysed using test day repeatability animal models. Fixed effects included 1,001 levels of herd-test date, 15 classes of days in milk, and 13 classes of age at calving within parity. The variation among cows was large for most of the traits. The heritability value for casein content was 0.31, as for protein content, and genetic and phenotypic correlations between these two traits were large (0.99 and 0.97 respectively). Milk urea content had a heritability of 0.17 and a positive genetic relationship with fat (0.12), null with protein (0.03) and casein (0.002) content and a negative genetic correlation with milk yield (-0.17) suggesting that the genetic improvement for milk urea content would be possible, but genetic gain would be affected by other traits included as selection criteria in the economic index and by their relative economic emphasis

    Partial Photoionization Cross Sections And Photoelectron Angular Distributions For Double Excitations Up To The N=5 Threshold In Helium

    Get PDF
    Partial photoionization cross sections sigma(n) and photoelectron angular distributions beta(n) were measured for all possible final ionic states He+(n) in the region of the double excitations N(K,T)(A) up to the N=5 threshold. At a photon energy bandpass of 12 meV below the thresholds N=3,4, and 5, this level of differentiation offers the most critical assessment of the dynamics of the two-electron excitations to date. The experimental data are very well described by the most advanced theoretical calculations. Weaker double-excitation series with K=N-4 are clearly visible in the beta(n) data, and even previously unobserved extremely weak series members with A=-1 can be discerned, showing the high sensitivity of the angular resolved measurements. The shapes of the resonance-induced variations of sigma(n) or beta(n) in the double excitations below a given threshold N change radically depending on the final ionic state n but display striking similarities when comparing the satellite states with n=N-1 and n=N-2 below each threshold N. These systematic patterns may indicate a general rule for the underlying two-electron dynamics

    The two phases of core formation : orbital evolution in the centres of ellipticals with supermassive black hole binaries

    Get PDF
    The flat stellar density cores of massive elliptical galaxies form rapidly due to sinking supermassive black holes (SMBHs) in gas-poor galaxy mergers. After the SMBHs form a bound binary, gravitational slingshot interactions with nearby stars drive the core regions towards a tangentially biased stellar velocity distribution. We use collisionless galaxy merger simulations with accurate collisional orbit integration around the central SMBHs to demonstrate that the removal of stars from the centre by slingshot kicks accounts for the entire change in velocity anisotropy. The rate of strong (unbinding) kicks is constant over several hundred Myr at similar to 3 M-circle dot yr(-1) for our most massive SMBII binary (M-BH = 1.7 x 10(10) M-circle dot). Using a frequency-based orbit classification scheme (box, x-tube, z-tube, rosette), we demonstrate that slingshot kicks mostly affect box orbits with small pericentre distances, leading to a velocity anisotropy of beta less than or similar to -0.6 within several hundred Myr as observed in massive ellipticals with large cores. We show how different SMBH masses affect the orbital structure of the merger remnants and present a kinematic tomography connecting orbit families to integral field kinematic features. Our direct orbit classification agrees remarkably well with a modern triaxial Schwarzschild analysis applied to simulated mock kinematic maps.Peer reviewe
    • …
    corecore