75 research outputs found

    Factors in the suboptimum performance of rural water supply systems in the Ethiopian highlands

    Get PDF
    Access to safe drinking water services in the Ethiopian Highlands is one of lowest worldwide due to failure of water supply services shortly after construction. Over hundred water supply systems were surveyed to find the underlying causes of failure and poor performance throughout the Amhara Regional State. The results show generally that systems with decision-making power at the community level during design and construction remained working longer than when the decisions were made by a central authority. In addition, the sustainability was better for water systems that were farther away from alternative water resources and contributed more cash and labour. The results of this study of the importance of decision-making at the local level in contrast to the central authority is directly applicable to the introduction of rain water management systems as shown by earlier efforts of installing rain water harvesting systems in the Ethiopian highlands

    Estimation of evaporation over the upper Blue Nile basin by combining observations from satellites and river flow gauges

    Get PDF
    Reliable estimates of regional evapotranspiration are necessary to improve water resources management and planning. However, direct measurements of evaporation are expensive and difficult to obtain. Some of the difficulties are illustrated in a comparison of several satellite-based estimates of evapotranspiration for the Upper Blue Nile (UBN) basin in Ethiopia. These estimates disagree both temporally and spatially. All the available data products underestimate evapotranspiration leading to basin-scale mass balance errors on the order of 35 percent of the mean annual rainfall. This paper presents a methodology that combines satellite observations of rainfall, terrestrial water storage as well as river-flow gauge measurements to estimate actual evapotranspiration over the UBN basin. The estimates derived from these inputs are constrained using a one-layer soil water balance and routing model. Our results describe physically consistent long-term spatial and temporal distributions of key hydrologic variables, including rainfall, evapotranspiration, and river-flow. We estimate an annual evapotranspiration over the UBN basin of about 2.55 mm per day. Spatial and temporal evapotranspiration trends are revealed by dividing the basin into smaller subbasins. The methodology described here is applicable to other basins with limited observational coverage that are facing similar future challenges of water scarcity and climate change

    MO analysis of the high statistics Belle results on γγπ+π,π0π0\gamma\gamma\to \pi^+\pi^-,\pi^0\pi^0 with chiral constraints

    Full text link
    We reconsider Muskhelishvili-Omn\`es (MO) dispersive representations of photon-photon scattering to two pions, motivated by the very high statistics results recently released by the Belle collaboration for charged as well as neutral pion pairs and also by recent progress in the determination of the low-energy ππ\pi\pi scattering amplitude. Applicability of this formalism is extended beyond 1 GeV by taking into account inelasticity due to KKˉK\bar{K} . A modified MO representation is derived which has the advantage that all polynomial ambiguities are collected into the subtraction constants and have simple relations to pion polarizabilities. It is obtained by treating differently the exactly known QED Born term and the other components of the left-hand cut. These components are approximated by a sum over resonances. All resonances up to spin two and masses up to 1.3\simeq1.3 GeV are included. The tensor contributions to the left-hand cut are found to be numerically important. We perform fits to the data imposing chiral constraints, in particular, using a model independent sum rule result on the p6p^6 chiral coupling c34c_{34}. Such theoretical constraints are necessary because the experimental errors are dominantly systematic. Results on further p6p^6 couplings and pion dipole and quadrupole polarizabilities are then derived from the fit. The relevance of the new data for distinguishing between two possible scenarios of isospin breaking in the f0(980)f_0(980) region is discussed.Comment: 44 pages, 12 figure

    Recombinase technology: applications and possibilities

    Get PDF
    The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes

    Transgenic Mice Showing Inflammation-Inducible Overexpression of Granulocyte Macrophage Colony-Stimulating Factor

    No full text
    We used the promoter of the human C-reactive protein (CRP) gene to drive inflammation-inducible overexpression of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) in transgenic mice. Transgenic mice carrying a CRP/GM-CSF fusion gene show a >150-fold increases in circulating levels of GM-CSF within 6 h of intraperitoneal inoculation with 25 μg of lipopolysaccharide. However, some of the transgenic mice also display relatively high basal levels of GM-CSF in the absence of any obvious inflammatory stimulus. Raised basal levels of GM-CSF are associated with a number of pathological changes, including enlarged and histologically abnormal livers and spleens and with increases in the number and activation state of macrophages and granulocytes in the peripheral blood. Despite problems associated with the expression of such a potent pleiotropic cytokine as GM-CSF, the principle of inflammation-inducible expression of chimeric constructs has been shown to be feasible. Inducible expression systems such as that described here could be of potential use in the study of the role of cytokines in health and disease and in the development of disease-resistant strains of livestock

    Detection of oprL gene and antibiotic resistance of Pseudomonas aeruginosa from aquaculture environment

    No full text
    Pseudomonas aeruginosa is a gram-negative rod shape bacterium belonging to the family Pseudomonadaceae. The species is highly adaptable opportunistic pathogen, capable of surviving in a variety of environment, including aquaculture environment. Antibiotics are used in the aquaculture environment, and their improper usage poses a risk of potential transfer of resistance from aquaculture bacteria to human and animal pathogens. This study was conducted to isolate P. aeruginosa from fish, prawn and water samples, followed by PCR detection of oprL gene locus. The antibiotic resistance pattern of the isolates was also determined. Based on the results from PCR analysis performed, 13 isolates of P. aeruginosawere isolated. All of the isolates tested were resistance to at least one antibiotic. Highest level of resistance was observed against ampicillin and erythromycin while the lowest was observed against gentamicin, norfloxacin and nalidixic acid. This study suggested that the presence of the bacteria in the aquaculture environment may pose the risk of antibiotic resistance to those who are exposed to the aquaculture environment.Based on the results of this study, it can be said that gentamicin, norflaxin and nalidixic acid can be effective agents for the treatment of P. aeruginosa

    Long-term trends in climate and hydrology in an agricultural, headwater watershed of central Pennsylvania, USA

    Get PDF
    AbstractStudy regionThe WE-38 Experimental Watershed, which is a small (7.3 km2) basin in the Ridge and Valley physiographic region of east-central Pennsylvania.Study focusWe used non-parametric Mann-Kendall tests to examine long-term (1968 to 2012) hydroclimatic (precipitation, temperature, streamflow) trends in WE-38 in the context of recent climate change across northeastern US.New hydrological insights for the regionAnnual mean temperatures in WE-38 increased 0.38°C per decade, leading to an expansion of the growing season (+2.8 days per decade) and a contraction of frost days (-3.6 days per decade). Consistent with increased temperatures, annual actual evapotranspiration rose significantly (+37.1mm per decade) over the study period. Precipitation also trended upward, with October experiencing the most significant increases in monthly total rainfall (+8.2mm per decade). While augmented October precipitation led to increased October streamflow (+5.0mm per decade), the trend in WE-38 streamflow was downward, with the most significant declines in July (-1.2mm per decade) and February (-7.5mm per decade). Declines in summertime streamflow also increased the duration of hydrological droughts (maximum consecutive days with streamflow < 10th percentile) by 1.9 days per decade. While our findings suggest some challenges for producers and water resource managers, most notably with increased fall rainfall and runoff, some changes such as enhanced growing seasons can be viewed positively, at least in the near term

    Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model

    Get PDF
    Phosphorus (P) loss from agricultural watersheds has long been a critical water quality problem, the control of which has been the focus of considerable research and investment. Preventing P loss depends on accurately representing the hydrological and chemical processes governing P mobilization and transport. The Soil and Water Assessment Tool (SWAT) is a watershed model commonly used to predict run-off and non-point source pollution transport. SWAT simulates run-off employing either the curve number (CN) or the Green and Ampt methods, both assume infiltration-excess run-off, although shallow soils underlain by a restricting layer commonly generate saturation-excess run-off from variable source areas (VSA). In this study, we compared traditional SWAT with a re-conceptualized version, SWAT-VSA, that represents VSA hydrology, in a complex agricultural watershed in east central Pennsylvania. The objectives of this research were to provide further evidence of SWAT-VSA’s integrated and distributed predictive capabilities against measured surface run-off and stream P loads and to highlight the model’s ability to drive sub-field management of P. Thus, we relied on a detailed field management database to parameterize the models. SWAT and SWAT-VSA predicted discharge similarly well (daily Nash–Sutcliffe efficiencies of 0.61 and 0.66, respectively), but SWAT-VSA outperformed SWAT in predicting P export from the watershed. SWAT estimated lower P loss (0.0–0.25 kg ha^-1) from agricultural fields than SWAT-VSA (0.0–1.0+ kg ha^-1), which also identified critical source areas – those areas generating large run-off and P losses at the sub-field level. These results support the use of SWAT-VSA in predicting watershed-scale P losses and identifying critical source areas of P loss in landscapes with VSA hydrology

    A simple semi-distributed water balance model for the Ethiopian highlands

    No full text
    The discharge of the Nile River is highly dependent on the flow generated in the highlands of Ethiopia. However, little is known about the local (i.e. small scale) watershed hydrological response, due in part to a lack of long duration, continuous hydrological data. The goal of this paper was to develop a realistic, simple model that is useful as a tool for planning watershed management and conservation activities so that the effects of local interventions on stream flow can be predicted at a larger scale. The developed model is semi-distributed in that it divides the watershed into different regions that become hydrologically active given different amounts of effective cumulative rainfall after the start of the rainy season. A separate water balance is run for each of the hydrologic regions using rainfall and potential evaporation as the major inputs. Watershed parameters that were calibrated included the amount of water required before each region becomes hydrologically active, the fraction of soil water that becomes runoff and subsurface flow, and aquifer characteristics, Model validation indicated that daily discharge values were predicted reasonably well with Nash Sutcliffe values ranging from 0•56 to 0•78. Despite the large distance between the test watersheds, the input parameter values for the watershed characteristic were remarkably similar for the humid highlands, indicating that the model could be used to predict discharge in un-gauged basins in the region. As expected, the watershed in the semi-arid region behaved somewhat differently than the other three watersheds. Good quality precipitation data, even for short durations, were key to the effective modelling of runoff in the highland watersheds
    corecore