121 research outputs found

    Simulations for the development of a ground motion model for induced seismicity in the Groningen gas field, the Netherlands

    Get PDF
    We present simulations performed for the development of a ground motion model for induced earthquakes in the Groningen gas field. The largest recorded event, with M3.5, occurred in 2012 and, more recently, a M3.4 event in 2018 led to recorded ground accelerations exceeding 0.1 g. As part of an extensive hazard and risk study, it has been necessary to predict ground motions for scenario earthquakes up to M7. In order to achieve this, while accounting for the unique local geology, a range of simulations have been performed using both stochastic and full-waveform finite-difference simulations. Due to frequency limitations and lack of empirical calibration of the latter approach, input simulations for the ground motion model used in the hazard and risk analyses have been performed with a finite-fault stochastic method. However, in parallel, extensive studies using the finite-difference simulations have guided inputs and modelling considerations for these simulations. Three approaches are used: (1) the finite-fault stochastic method, (2) elastic point- and (3) finite-source 3D finite-difference simulations. We present a summary of the methods and their synthesis, including both amplitudes and durations within the context of the hazard and risk model. A unique form of wave-propagation with strong lateral focusing and defocusing is evident in both peak amplitudes and durations. The results clearly demonstrate the need for a locally derived ground motion model and the potential for reduction in aleatory variability in moving toward a path-specific fully non-ergodic model

    Top pair Asymmetries at Hadron colliders with general ZZ' couplings

    Full text link
    Recently it has been shown that measurement of charge asymmetry of top pair production at LHC excludes any flavor violating ZZ' vector gauge boson that could explain Tevatron forward-backward asymmetry (FBA). We consider the general form of a ZZ' gauge boson including left-handed, right-handed vector and tensor couplings to examine FBA and charge asymmetry. To evaluate top pair asymmetries at Tevatron and LHC, we consider Bq0B^0_q mixing constraints on flavor changing ZZ' couplings and show that this model still explain forward-backward asymmetry at Tevatron and charge asymmetry can not exclude it in part of parameters space.Comment: 18 pages, 7 figure

    Bottom pressure signals at the TAG deep-sea hydrothermal field : evidence for short-period, flow-induced ground deformation

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L19301, doi:10.1029/2009GL040006.Bottom pressure measurements acquired from the TAG hydrothermal field on the Mid-Atlantic Ridge (26°N) contain clusters of narrowband spectral peaks centered at periods from 22 to 53.2 minutes. The strongest signal at 53.2 min corresponds to 13 mm of water depth variation. Smaller, but statistically significant, signals were also observed at periods of 22, 26.5, 33.4, and 37.7 min (1–4 mm amplitude). These kinds of signals have not previously been observed in the ocean, and they appear to represent vertical motion of the seafloor in response to hydrothermal flow - similar in many ways to periodic terrestrial geysers. We demonstrate that displacements of 13 mm can be produced by relatively small flow-induced pressures (several kPa) if the source region is less than ∼100 m below the seafloor. We suggest that the periodic nature of the signals results from a non-linear relationship between fluid pore pressure and crustal permeability

    Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 3 (2010): 286-292, doi:10.1038/ngeo824.Mid-ocean ridge crustal accretion occurs continuously at all spreading rates through a combination of magmatic and tectonic processes. Fast to slow spreading ridges are largely built by adding magma to narrowly focused neovolcanic zones. In contrast, ultraslow spreading ridge construction significantly relies on tectonic accretion, which is characterized by thin volcanic crust, emplacement of mantle peridotite directly to the seafloor, and unique seafloor fabrics with variable segmentation patterns. While advances in remote imaging have enhanced our observational understanding of crustal accretion at all spreading rates, temporal information is required in order to quantitatively understand mid-ocean ridge construction. However, temporal information does not exist for ultraslow spreading environments. Here, we utilize U-series eruption ages to investigate crustal accretion at an ultraslow spreading ridge for the first time. Unexpectedly young eruption ages throughout the Southwest Indian ridge rift valley indicate that neovolcanic activity is not confined to the spreading axis, and that magmatic crustal accretion occurs over a wider zone than at faster spreading ridges. These observations not only suggest that crustal accretion at ultraslow spreading ridges is distinct from faster spreading ridges, but also that the magma transport mechanisms may differ as a function of spreading rate.This work was supported by the following NSF grants: NSF-OCE 0137325; NSF-OCE 060383800; and NSF-OCE 062705300

    Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge)

    Get PDF
    Microbathymetry data, in situ observations, and sampling along the 138200N and 138200N oceanic core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the alongextension direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover is shed. Detachment fault rocks are primarily basalt fault breccia at 138200N OCC, and gabbro and peridotite at 138300N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of lithologies in the detachment zone. Finally, faulting and volcanism dismember the 138300N OCC, with widespread present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the 138200N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous relationship between hydrothermal activity and oceanic detachment formation and evolution

    Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM

    Get PDF
    We consider the gluon fusion production cross section of a scalar Higgs boson at NLO QCD in the SM and in the MSSM. We implement the calculation in the POWHEG approach, and match the NLO-QCD results with the PYTHIA and HERWIG QCD parton showers. We discuss a few representative scenarios in the SM and MSSM parameter spaces, with emphasis on the fermion and squark mass effects on the Higgs boson distributions.Comment: 27 pages, 36 eps figures; v2: 2 eps figures added, section 3.2 expanded, version published in JHE

    The effective Standard Model after LHC Run I

    Get PDF
    We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension- 6 operators on electroweak precision tests that is more general than the standard S, T formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run 1. We illustrate the combined constraints with the example of the two-Higgs doublet model

    Constraints on the gluon PDF from top quark pair production at hadron colliders

    Get PDF
    Using the recently derived NNLO cross sections \cite{Czakon:2013goa}, we provide NNLO+NNLL theoretical predictions for top quark pair production based on all the available NNLO PDF sets, and compare them with the most precise LHC and Tevatron data. In this comparison we study in detail the PDF uncertainty and the scale, mtm_t and αs\alpha_s dependence of the theoretical predictions for each PDF set. Next, we observe that top quark pair production provides a powerful direct constraint on the gluon PDF at large xx, and include Tevatron and LHC top pair data consistently into a global NNLO PDF fit. We then explore the phenomenological consequences of the reduced gluon PDF uncertainties, by showing how they can improve predictions for Beyond the Standard Model processes at the LHC. Finally, we update to full NNLO+NNLL the theoretical predictions for the ratio of top quark cross sections between different LHC center of mass energies, as well as the cross sections for hypothetical heavy fourth-generation quark production at the LHC.Comment: 29 pages, 13 figures, accepted for publication in JHE
    corecore