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1 Introduction

Understanding the mechanism that leads to the breaking of the electroweak symmetry and

that is responsible for the generation of the mass of the elementary particles is one of the

major challenges of high energy physics. The search for the Higgs boson(s) is currently

under way at the Tevatron and at the LHC, and limits on the Higgs mass spectrum have

already been set [1–5]. This search requires an accurate control of all the Higgs production

and decay mechanisms, including the effects due to radiative corrections [6].

In the Standard Model (SM) the gluon fusion process [7] is the dominant Higgs pro-

duction mechanism both at the Tevatron and at the LHC. The total cross section receives

very large next-to-leading order (NLO) QCD corrections, which were first computed in

ref. [8, 9] in the so-called heavy-quark effective theory (HQET), i.e. including only the

top-quark contributions in the limit mt → ∞. Later calculations [10–14] retained the ex-

act dependence on the masses of the top and bottom quarks running in the loops. The

next-to-next-to-leading order (NNLO) QCD corrections are also large, and have been com-

puted in the HQET in ref. [15–20]. The finite-top-mass effects at NNLO QCD have been

studied in ref. [21–27] and found to be small. The resummation to all orders of soft gluon

radiation has been studied in refs. [28, 29]. Leading third-order (NNNLO) QCD terms

have been discussed in ref. [30, 31]. The role of electroweak (EW) corrections has been

discussed in refs. [32–40]. The impact of mixed QCD-EW corrections has been discussed in

ref. [41]. The residual uncertainty on the total cross section depends mainly on the uncom-

puted higher-order QCD effects and on the uncertainties that affect the parton distribution

functions (PDF) of the proton [6, 42, 43].

The Higgs sector of the Minimal Supersymmetric Standard Model (MSSM) consists

of two SU(2) doublets, H1 and H2, whose relative contribution to electroweak symmetry
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breaking is determined by the ratio of vacuum expectation values of their neutral compo-

nents, tanβ ≡ v2/v1. The spectrum of physical Higgs bosons is richer than in the SM,

consisting of two neutral CP-even bosons, h and H, one neutral CP-odd boson, A, and

two charged bosons, H±. The couplings of the MSSM Higgs bosons to matter fermions

differ from those of the SM Higgs, and they can be considerably enhanced (or suppressed)

depending on tanβ. As in the SM, gluon fusion is one of the most important production

mechanisms for the neutral Higgs bosons, whose couplings to the gluons are mediated by

top and bottom quarks and their supersymmetric partners, the stop and sbottom squarks.

In the MSSM, the cross section for Higgs boson production in gluon fusion is currently

known at the NLO. The contributions arising from diagrams with quarks and gluons can

be obtained from the corresponding SM results [10–14] with an appropriate rescaling of the

Higgs-quark couplings. The contributions arising from diagrams with squarks and gluons

were first computed under the approximation of vanishing Higgs mass in ref. [44], and the

full Higgs-mass dependence was included in later calculations [12–14, 45]. The contributions

of two-loop diagrams involving top, stop and gluino to both scalar and pseudoscalar Higgs

production were computed under the approximation of vanishing Higgs mass in refs. [46–

49], whose results were later confirmed and cast in a compact analytic form in refs. [50, 51].

The approximation of vanishing Higgs mass can provide reasonably accurate results

as long as the Higgs mass is well below the threshold for creation of the massive particles

running in the loops. For the production of the lightest scalar Higgs, this condition does

apply to the two-loop diagrams involving top, stop and gluino, but it obviously does not

apply to the corresponding diagrams involving the bottom quark, whose contribution can

be relevant for large values of tanβ. In turn, the masses of the heaviest scalar and of the

pseudoscalar might very well approach (or exceed) the threshold for creation of top quarks

or even of squarks. Unfortunately, retaining the full dependence on the Higgs mass in the

quark-squark-gluino contributions has proved a rather daunting task. A calculation based

on a combination of analytic and numerical methods was presented in ref. [52] (see also

ref. [53]), but neither explicit analytic results nor a public computer code have been made

available so far. However, ref. [54] presented an approximate evaluation of the bottom-

sbottom-gluino contributions to scalar production, based on an asymptotic expansion in

the large supersymmetric masses that is valid up to and including terms of O(m2
b/m

2
φ),

O(mb/MSUSY ) and O(m2
Z
/M2

SUSY ), where mφ denotes a Higgs boson mass and MSUSY

denotes a generic superparticle mass. An independent calculation of the bottom-sbottom-

gluino contributions, restricted to the limit of a degenerate superparticle mass spectrum,

was also presented in ref. [55], confirming the results of ref. [54]. More recently, ref. [51]

presented an evaluation of the quark-squark-gluino contributions to pseudoscalar produc-

tion that is also based on an asymptotic expansion in the large supersymmetric masses,

but does not assume any hierarchy between the pseudoscalar mass and the quark mass,

thus covering both the top-stop-gluino and bottom-sbottom gluino cases.

The total cross section, without acceptance cuts, provides important information about

the Higgs boson production rate. On the other hand, especially at the LHC, it is very

likely that a Higgs boson is produced in association with a jet, generating a transverse

momentum pHT of the Higgs boson. The first studies on Higgs+jet final states in the SM
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were performed in ref. [56, 57], using the real-parton emission amplitudes that enter the

calculation of the NLO-QCD corrections to the inclusive Higgs production cross section.

The NLO corrections to the Higgs+jet final state at large transverse momentum of the

Higgs boson were subsequently studied in ref. [58–64], and the resummation of all the

logarithmically enhanced terms, matched with the NLO calculation of the Higgs+jet final

state, was discussed in ref. [65–67]. The impact on the Higgs+jet final state of the NLO-

EW corrections and of the finite masses of the particles running in the loops was discussed

in ref. [68–70]. In the MSSM, the production of a neutral Higgs boson in association with

one jet was discussed in refs. [71–75].

A different set of observables are the differential distributions of the Higgs boson,

inclusive over QCD radiation. For the SM case, results were presented in ref. [76–78] at

NLO-QCD and in ref. [79–82] at NNLO-QCD. The Higgs boson transverse momentum

spectrum, including the NLO-QCD corrections matched with the resummation of next-to-

next-to-leading logarithmic (NNLL) enhanced terms, has been studied in refs. [83–88]. In

the MSSM a study of the Higgs distributions, at NLO-QCD, was discussed in ref. [55].

If a new scalar particle is discovered at the Tevatron or at the LHC, a major question

will be to determine whether it is a Higgs boson and, in that case, whether it belongs to

the particle spectrum of the SM, of the MSSM or of any other model. An example could

be represented by a MSSM Higgs boson whose production cross section is close to the

production cross section for a SM Higgs boson of equal mass. In this case, an accurate

study of the differential distributions involving the Higgs boson might shed some light on

the underlying model.

A precise analysis of the experimental data requires the use of NLO-QCD results

merged with the description of initial-state multiple gluon emission via a QCD parton

shower (PS) Monte Carlo (MC) such as HERWIG [89, 90] or PYTHIA [91]. However, the

merging of NLO-QCD matrix elements with PS faces the problem of avoiding double

counting, as addressed in refs. [92, 93]. The POWHEG method [94] allows to systematically

merge NLO calculations with vetoed PS, avoiding double counting and preserving the NLO

accuracy of the calculation. The procedure can be implemented using a set of tools and

results available in the so-called POWHEG BOX [95]. The latter provides a general framework

that exploits the universal nature of initial-state collinear divergences and the factorization

property of soft radiation to automatize the subtraction of all the soft and/or collinear

divergent terms from the NLOmatrix elements of an arbitrary process. The POWHEGmethod

does not rely on the details of the shower MC and, by construction, guarantees an accuracy

at NLO + leading logarithmic (LL) QCD. In ref. [97] it has been shown that, with an

appropriate choice of scale for the strong coupling constant, the merging procedure can

also reproduce the next-to-leading logarithmic (NLL) terms.

At present, no code exists that merges the NLO-QCD results for the gluon fusion

process with a QCD PS, retaining the exact dependence on the Higgs mass and on the

masses of the particles running in the loops. Two implementations of the NLO-QCD results

merged with a PS are available:1 the one in MC@NLO [96] and the one in the POWHEG BOX

1 These implementations are also available as a subprocess of HERWIG++ [98, 99].
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framework [97]. However, both implementations are limited to the SM case, and beyond LO

they only include results computed in the HQET. Conversely, the codes HIGLU [100, 101]

and iHixs [102] contain the full dependence on the Higgs and quark masses up to NLO, and

HIGLU also allows to include the full squark-gluon contributions from ref. [45], but neither

code is matched to a shower MC. Recently, a step toward the inclusion of the finite-quark-

mass effects in PS was taken in ref. [103], where parton-level events for Higgs production

accompanied by zero, one or two partons are generated with matrix elements computed in

the HQET, and then, before being passed to the PS, they are re-weighted by the ratio of

the exact one-loop amplitudes over the approximate ones. This procedure is equivalent to

generating events directly with the exact one-loop amplitudes, yet it is much faster.

We aim to provide a code that fills the remaining gap, using matrix elements that in-

clude the dependence on the masses, both in the SM and in the MSSM, properly matched

to an external shower MC. For the SM case, we use NLO matrix elements with full depen-

dence on the Higgs, top and bottom masses. For the MSSM case, we use matrix elements

with exact dependence on the quark, squark and Higgs masses in the contributions of

real-parton emission. For the two-loop virtual contributions, the approximation of van-

ishing Higgs mass is employed in the diagrams involving superpartners, while the rest is

computed exactly.

The plan of the paper is as follows: in section 2 we describe the basic features of the

POWHEG implementation of gg → φ; in section 3 we discuss our SM implementation with

exact dependence on the fermion masses, presenting a numerical analysis valid for an on-

shell Higgs; section 4 is devoted to analyzing the MSSM case; finally, in section 5 we draw

our conclusions.

2 POWHEG implementation of gg → φ

In this section we briefly discuss the implementation of the gluon-fusion Higgs production

process in the POWHEG BOX framework, following closely ref. [97] (see also ref. [104]). We

fix the notation keeping the discussion at a general level, without referring to a specific

model. In the next sections the formulae presented below will be specialized to the SM

and MSSM cases.

The generation of the hardest emission is done in POWHEG according to the follow-

ing formula:

dσ = B̄(Φ̄1) dΦ̄1

{
∆
(
Φ̄1, p

min
T

)
+∆

(
Φ̄1, pT

) R
(
Φ̄1,Φrad

)

B
(
Φ̄1

) dΦrad

}

+
∑

q

Rqq̄

(
Φ̄1,Φrad

)
dΦ̄1dΦrad . (2.1)

In the equation above the variables Φ̄1 ≡ (M2, Y ) denote the invariant mass squared and

the rapidity of the Higgs boson, which describe the kinematics of the Born (i.e., lowest-

order) process gg → φ. The variables Φrad ≡ (ξ, y, φ) describe the kinematics of the

additional final-state parton in the real emission processes. In particular, denoting by k′2
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the momentum of the final-state parton in the partonic center-of-mass frame, or

k′2 = k′ 02 (1, sin θ sinφ, sin θ cosφ, cos θ), (2.2)

we have

k′ 02 =

√
s

2
ξ, y = cos θ , (2.3)

where s is the partonic center-of-mass energy squared.

The factor B̄(Φ̄1) in eq. (2.1) is related to the total cross section computed at NLO

in QCD. It contains the value of the differential cross section, for a given configuration

of the Born final state variables, integrated over the radiation variables. The integral of

this quantity on dΦ̄1 without acceptance cuts yields the total cross section. This factor is

responsible for the correct NLO-QCD normalization of the result, and is computed in the

initialization phase using the real and virtual NLO-QCD corrections.

The terms within curly brackets in eq. (2.1) describe the real emission spectrum of an

extra parton: the first term is the probability of not emitting any parton with transverse

momentum larger than a cutoff pmin
T , while the second term is the probability of not emitting

any parton with transverse momentum larger than a given value pT times the probability

of emitting a parton with transverse momentum equal to pT . The sum of the two terms

fully describes the probability of having either zero or one additional parton in the final

state. The probability of non-emission of a parton with transverse momentum kT larger

than pT is obtained using the POWHEG Sudakov form factor

∆(Φ̄1, pT ) = exp

{
−
∫

dΦrad
R(Φ̄1,Φrad)

B(Φ̄1)
θ(kT − pT )

}
. (2.4)

Finally, the last term in eq. (2.1) describes the effect of the qq̄ → φg channel, which has

been kept apart in the generation of the first hard emission because it does not factorize

into the Born cross section times an emission factor.

We now discuss the various terms appearing in eq. (2.1) in more detail. We have:

B̄(Φ̄1) = Bgg(Φ̄1) + Vgg(Φ̄1) (2.5)

+

∫
dΦrad

{
R̂gg

(
Φ̄1,Φrad

)
+
∑

q

[
R̂gq

(
Φ̄1,Φrad

)
+ R̂qg

(
Φ̄1,Φrad

)]
}

+ c. r. ,

where

Bgg(Φ̄1) = Bgg(Φ̄1)Lgg , (2.6)

Vgg(Φ̄1) = Vgg(Φ̄1)Lgg , (2.7)

R̂gg(Φ̄1,Φrad) = R̂gg(Φ̄1,Φrad)Lgg , (2.8)

R̂gq(Φ̄1,Φrad) = R̂gq(Φ̄1,Φrad)Lgq , (2.9)

R̂qg(Φ̄1,Φrad) = R̂qg(Φ̄1,Φrad)Lqg , (2.10)

with Lab the luminosity for the partons a and b. In eq. (2.5) “ c. r.” denotes the collinear

remnants multiplied by the relevant parton luminosity. The remnants are the finite leftovers
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after the subtraction of the initial-state collinear singularities into the parton distribution

function is performed, and their explicit expressions are given in eqs. (2.36), (2.37) and

(3.7)–(3.10) of ref. [97].

The function Bgg(Φ̄1) in eq. (2.6) represents the squared matrix element of the Born

contribution to the process, averaged over colors and helicities of the incoming gluons, and

multiplied by the flux factor 1/(2M2). It is given by

Bgg(Φ̄1) =
Gµ α

2
s(µ

2
R )M2

256
√
2π2

∣∣∣H1ℓ
∣∣∣
2
, (2.11)

where H is the form factor for the coupling of the Higgs boson with two gluons, whose

explicit form depends on the particle content of the model considered and will be detailed

in the following sections. It is decomposed in one- and two loop parts as

H = H1ℓ +
αs

π
H2ℓ +O(α2

s) . (2.12)

The regularized two-loop virtual contributions are contained in

Vgg(Φ̄1) =
αs

π

[
CA

π2

3
+ β0 ln

(
µ2
R

µ2
F

)
+ 2Re

(H2ℓ

H1ℓ

)]
Bgg(Φ̄1) . (2.13)

In the equation above, µR and µF are the renormalization and factorization scale, respec-

tively, CA = Nc (Nc being the number of colors), and β0 = (11CA − 2Nf )/6 (Nf being

the number of active flavors) is the one-loop beta function of the strong coupling.

The hatted functions R̂ij in eqs. (2.8)–(2.10) are the Frixione, Kunst and Signer [105,

106] infrared-subtracted counterparts of Rij

R̂ij(Φ̄1,Φrad) =
1

ξ

{
1

2

(
1

ξ

)

+

[(
1

1− y

)

+

+

(
1

1 + y

)

+

]} [
(1− y2) ξ2Rij(Φ̄1,Φrad)

]
,

(2.14)

where Rij are the squared amplitudes, averaged over the incoming helicities and colors and

multiplied by the flux factor 1/(2s), for the NLO partonic subprocesses (gg → φg, gq →
φq, qg → qφ):

Rgg(Φ̄1,Φrad) =
3Gµ α

3
s M

8

√
2π 2 s

|Agg(s, t, u)|2
stu

, (2.15)

Rgq(Φ̄1,Φrad) = −Gµ α
3
s M

4

√
2π 6 s

s2 + u2

(s+ u)2 t
|Aqg(s, t, u)|2 , (2.16)

Rqg(Φ̄1,Φrad) = −Gµ α
3
s M

4

√
2π 6 s

s2 + t2

(s+ t)2 u
|Aqg(s, u, t)|2 , (2.17)

where s = M2/(1− ξ), t = −(s/2) ξ (1 + y) and u = −(s/2) ξ (1− y).

The complete real matrix elements that enter the POWHEG Sudakov form factor,

eq. (2.4), read

R(Φ̄1,Φrad) = Rgg(Φ̄1,Φrad) +
∑

q

[
Rgq(Φ̄1,Φrad) +Rqg(Φ̄1,Φrad)

]
, (2.18)

B
(
Φ̄1

)
= Bgg

(
Φ̄1

)
, (2.19)

– 6 –



J
H
E
P
0
2
(
2
0
1
2
)
0
8
8

where the functions Rab are the non-infrared-subtracted counterparts of eqs. (2.8)–(2.10).

The probability for the emission of the first and hardest parton is described with the exact

matrix element in all the phase space regions.

Finally, the contribution of the qq̄ → φg channel is

Rqq̄(Φ̄1,Φrad) = Rqq̄(Φ̄1,Φrad)Lqq̄, (2.20)

with

Rqq̄(Φ̄1,Φrad) =
4Gµ α

3
s M

4

√
2π 9 s

t2 + u2

(t+ u)2 s
|Aqq̄(s, t, u)|2 . (2.21)

The functions Agg, Aqg in eqs. (2.15)–(2.17) and Aqq̄ in eq. (2.21) depend on the

particle content of the model considered, and will be defined in the following sections.

3 SM results

The current public release of POWHEG [95] contains matrix elements evaluated in the HQET.

It also gives the user the possibility of rescaling the term B̄(Φ̄1) in eq. (2.1) by a normal-

ization factor defined as the ratio between the exact Born contribution where the full

dependence from the top and bottom masses is kept into account and the Born contri-

bution evaluated in the HQET. In the following we describe the modifications we have

introduced in the code to include the full fermion-mass dependence at the NLO and the

effect of the two-loop EW corrections.

3.1 Modifications in POWHEG

The inclusion of the fermion-mass effects is achieved using for the functions

H1ℓ, H2ℓ, Agg, Aqg, Aqq̄ the exact results instead of those computed in the HQET. For

the Born term we have

H1ℓ = −4TF

∑

q=t,b

λq yq

[
2− (1− 4yq)

1

2
ln2 (xq)

]
, (3.1)

where

yq ≡
m2

q

M2
, xq ≡

√
1− 4yq − 1√
1− 4yq + 1

, (3.2)

TF = 1/2 is the matrix normalization factor of the fundamental representation of SU(Nc),

and λq is a normalization factor for the Higgs-quark coupling. In the SM case λq = 1 for

both the top and the bottom quark.

The form factor H2ℓ contains the mass-dependent contribution of the two-loop virtual

corrections, and can be cast in the following form:

H2ℓ = TF

∑

q=t,b

λq

(
CF G(2ℓ,CR)

1/2 (xq) + CA G(2ℓ,CA)
1/2 (xq)

)
+ h.c. , (3.3)

where CF = (N2
c − 1)/(2Nc). Explicit analytic expressions for G(2ℓ,CR(CA))

1/2 given in terms

of harmonic polylogarithms can be found in ref. [13]. It should be noticed that G(2ℓ,CR)
1/2
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depends on the choice of renormalization scheme for the quark mass entering the one-loop

part of the form factor. In ref. [13] expressions for G(2ℓ,CR)
1/2 with on-shell (OS) or MS

parameters are presented. In our implementation we allow the choice among the OS, MS

or DR renormalization schemes.

Concerning the real emission contributions, we have for the gg → Hg channel

|Agg(s, t, u)|2 = |A2(s, t, u)|2 + |A2(u, s, t)|2 + |A2(t, u, s)|2 + |A4(s, t, u)|2 , (3.4)

where the functions A2 and A4 can be cast in the following form:

A2(s, t, u) = TF

∑

q=t,b

λq y
2
q

[
b1/2(sq, tq, uq) + b1/2(sq, uq, tq)

]
, (3.5)

A4(s, t, u) = TF

∑

q=t,b

λq y
2
q

[
c1/2(sq, tq, uq) + c1/2(tq, uq, sq) + c1/2(uq, sq, tq)

]
, (3.6)

with

sq ≡
s

m2
q

, tq ≡
t

m2
q

, uq ≡
u

m2
q

. (3.7)

Explicit expressions for the functions b1/2(sq, tq, uq) and c1/2(sq, tq, uq) are given in ref. [14].

The function Aqq̄(s, t, u) relevant for the qq̄ → Hg channel is given by

Aqq̄(s, t, u) = TF

∑

q=t,b

λq yq d1/2(sq, tq, uq) , (3.8)

and d1/2(sq, tq, uq) can be found in ref. [14]. Finally Aqg(s, t, u) relevant for the qg → Hg

channel can be obtained from Aqq̄(s, t, u) via

Aqg(s, t, u) = Aqq̄(t, s, u) . (3.9)

The two-loop EW corrections are included as a factor (1 + δEW) which multiplies the

term B̄(Φ̄1) in the first line of eq. (2.1). This choice follows from the current structure of

POWHEG where the qq̄ → Hg channel is kept apart, because it is not proportional to the

Born cross section in the collinear limit. In the SM case, the values of the correction δEW

as a function of the Higgs boson mass can be obtained from ref. [38, 39].

3.2 SM: numerical results

In this section we present numerical results for the production of an on-shell Higgs boson

in the SM. We focus our analysis on the inclusion of the exact quark-mass dependence in

the NLO corrections and on the effect of the EW corrections. We also consider the effect of

merging POWHEG with a PS. The results have been obtained for the LHC with center-of-mass

energy of 7TeV, using the following numerical values for the physical input parameters:

Gµ = 1.16637 · 10−5GeV−2, mt = 172.5GeV and mb = 4.75GeV [6]. We have used the

MSTW2008 [107] NLO set of PDF to describe to partonic content of the proton. In the

code the value of αs(mZ) is set accordingly to the choice made in the PDF set: in our case

αs(mZ) = 0.12018. When discussing the distributions in the Higgs transverse momentum
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Figure 1. Total cross section for SM Higgs production in gluon fusion at the LHC (7TeV), as

a function of the Higgs mass, including different subsets of radiative corrections. We show the

absolute predictions (left panel) and their ratio with respect to the current POWHEG implementation

(right panel).

pHT , a cut pHT > 0.8GeV has been enforced. The renormalization and the factorization

scales have been set equal to the Higgs boson mass: µR = µF = mH .

In the left panel of figure 1 we plot the total Higgs production cross section, without

acceptance cuts, in three different approximations: the dot-dashed line corresponds to the

current public POWHEG implementation, in which the NLO-QCD corrections are computed

in the HQET and are then rescaled with the exact Born cross section (which includes the

full dependence on the top and bottom masses); the dashed line corresponds to the POWHEG

implementation presented in this paper, where the complete NLO-QCD calculation is em-

ployed, i.e. the top and bottom contributions are treated exactly in the NLO corrections;

the solid line also includes the effect of the EW corrections.

In the right panel of figure 1 we plot the ratio between the Higgs production cross

section obtained using our version of POWHEG and the one obtained using the current public

version. The dashed line omits the effect of the EW corrections, while the solid line includes

it. For mH . 160GeV the exact treatment of the quark masses results in an increase up

to ∼ 6% in the cross section, with a further increase (up to a combined ∼ 10%) when the

EW corrections are included. This effect is mainly due to the bottom-quark contribution,

which is not negligible when the Higgs boson is light. For mH & 180GeV the quark-mass

effects and the EW corrections have opposite sign, resulting in a ∼ −2% correction in the

Higgs mass range up to 2mt. Above the threshold for real top-quark production, where

the approximation mt → ∞ is not valid, the large corrections due to the quark-mass effects

in the QCD contribution are partially screened by the EW corrections. In the rest of the

section we discuss the kinematic distributions of a SM Higgs boson at NLO QCD. Since the

effect of the EW corrections is very close to an overall rescaling of the total cross section,

we neglect them in the following and focus on the effect of the QCD corrections.
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Figure 2. Rapidity distribution for a SM Higgs with mH = 120 GeV. Left plots: in red (dashed)

the current implementation of POWHEG, in which the NLO-QCD corrections are computed in the

HQET and are rescaled by the LO cross section with exact top and bottom mass dependence;

in blue (solid) the exact NLO-QCD corrections with full top and bottom mass dependence. The

results are obtained at fixed-order NLO QCD (upper plots), or including the effects of the Sudakov

form factor and of the PYTHIA PS (lower plots). Right plots: ratio of the result of exact calculation

over the result of the current POWHEG implementation.

In figure 2 we show the rapidity distribution for a Higgs boson with mass mH =

120GeV. In the left panels, the dashed red lines correspond to the distributions obtained

using the current implementation of POWHEG, and the solid blue lines correspond to our

implementation. In the right panels we plot the ratio between the distributions obtained

with the two implementations. We compare two different approximations: in the upper

panels we show the pure (i.e., fixed-order) NLO-QCD calculation, while in the lower panels

we show the event distributions according to the basic formula of POWHEG, eq. (2.1), which

includes the effects of the Sudakov form factors, merged also with the PYTHIA QCD PS. As

appears from the plots, the exact treatment of the quark masses results in a ∼ 5% enhance-

ment, uniformly distributed over the whole rapidity range. In the absence of acceptance

cuts, the results obtained by combining POWHEG and PYTHIA do not differ significantly from

the pure NLO-QCD results.

In figure 3 we show the transverse momentum distribution for a Higgs boson of mass

mH = 120GeV. In the left panels we compare the current POWHEG implementation with
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Figure 3. Transverse momentum distribution for a SM Higgs with mH = 120GeV. Left plots: in

red (dashed) the current POWHEG implementation, in which the NLO-QCD corrections are computed

in the HQET and are rescaled by the LO cross section with full top and bottom mass dependence; in

blue (solid) the exact NLO-QCD corrections with full top and bottom mass dependence. The results

are obtained at NLO QCD (upper plots), including the effects of the Sudakov form factor (middle

plots), including also the effects of the PYTHIA QCD PS (lower plots). Right plots: the full NLO-

QCD results (blue, solid) and the ones obtained by introducing in POWHEG only the exact top-mass

dependence (black, dashed), both normalized to the results of the current POWHEG implementation.

ours but, differently from figure 2, we show separately the pure NLO-QCD, POWHEG and

POWHEG + PYTHIA calculations. In the right panels we plot the full results (blue, solid

lines) and the ones obtained by introducing in POWHEG only the exact top-mass dependence

(black, dashed lines), both normalized to the results of the current POWHEG implementation.
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The pure NLO-QCD calculation (upper panels) diverges for vanishing Higgs transverse

momentum, although in figure 3 the divergence is masked by the lower cut on pHT . The

plot on the right shows that for pHT . mt it is the inclusion of the bottom-quark contri-

bution in the NLO corrections that gives rise to a positive correction with respect to the

result obtained with the current POWHEG version, while for pHT & mt there is a substantial

modification of the distribution, with a large negative correction driven by the use of the

exact top-quark contribution.

The inclusion of the effect of the Sudakov form factor (central panels) modifies the

distribution in such a way that the latter vanishes in the limit pHT → 0. As can be read

from eq. (2.1), the probability of emitting the Higgs in association with a parton de-

pends on the product ∆ × R/B, where R is the squared matrix element for real-parton

emission, B is the Born amplitude, and ∆ is the Sudakov factor, which in turn is expo-

nentially suppressed by R/B, see eq. (2.4). In the current POWHEG implementation, the

emission probability is computed in terms of the ratio R(t,∞)/B(t,∞), where both R

and B are evaluated in the HQET.2 For small pHT , the Sudakov factor with exact top

and bottom mass dependence, ∆(t+ b, exact), used in our implementation is smaller than

the corresponding factor ∆(t,∞) used in the current POWHEG implementation, because

R(t + b, exact)/B(t + b, exact) > R(t,∞)/B(t,∞). This inequality holds for two rea-

sons: first, the pHT distribution is proportional to R, and R(t + b, exact) > R(t,∞) for

pHT < 200GeV [68–70]; second, the inclusion of the bottom contribution reduces the LO

cross section with respect to the result obtained in the HQET [10]. Thus, as shown in the

right plot, for small pHT the Sudakov factor suppresses the pHT distribution by almost 10%

with respect to the result obtained in the current POWHEG implementation. Since the emis-

sion probability is also directly proportional to the ratio R/B, starting from pHT ≃ 30GeV

this factor prevails over the Sudakov factor, and the distribution with exact dependence on

the quark masses becomes larger than the one in the current POWHEG implementation by

up to ∼ 15%. Finally, for pHT & mt the inclusion of the full top-mass dependence leads to a

negative correction, similar to the one already observed in the pure NLO-QCD calculation.

The inclusion of multiple gluon emission with the PYTHIA QCD-PS (lower panels) does not

change dramatically — in the absence of acceptance cuts — the results obtained including

only the hardest emission.

Figure 4 shows the transverse momentum distribution for a Higgs boson of mass

mH = 500GeV. The meaning of the different curves is the same as in figure 3. In the

pure NLO-QCD calculation (upper panels), the effect of using a finite top mass in the

NLO corrections is always negative and monotonically decreasing for increasing transverse

momentum. Contrary to the light-Higgs case, the use of a finite top mass in the Sudakov

form factor (central panels) yields an enhancement of the transverse momentum distribu-

tion at small values of pHT . For pHT & 80GeV the mass effects induce instead a dampening

of the spectrum. As for the case of mH = 120GeV, the introduction of the QCD PS

2In the current POWHEG implementation only the total cross section is rescaled by the exact top+bottom

LO result.
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Figure 4. Transverse momentum distribution for a SM Higgs with mH = 500GeV. Left plots: in

red (dashed) the current POWHEG implementation, in which the NLO-QCD corrections are computed

in the HQET and are rescaled by the LO cross section with full top and bottom mass dependence; in

blue (solid) the exact NLO-QCD corrections with full top and bottom mass dependence. The results

are obtained at NLO QCD (upper plots), including the effects of the Sudakov form factor (middle

plots), including also the effects of the PYTHIA QCD PS (lower plots). Right plots: the full NLO-

QCD results (blue, solid) and the ones obtained by introducing in POWHEG only the exact top-mass

dependence (black, dashed), both normalized to the results of the current POWHEG implementation.

(lower panels) does not modify substantially the distributions. As can be seen from the

plots on the right, for such a large value of the Higgs mass the bottom contribution is

highly suppressed.
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Figure 5. Transverse momentum distribution for a SM Higgs with mH = 120GeV. Left: compar-

ison of the results obtained with POWHEG+PYTHIA (red dashed line) and with POWHEG+HERWIG (blue

solid line). Right: ratio POWHEG+HERWIG over POWHEG+PYTHIA.

In order to illustrate the uncertainty arising from the use of different PS algorithms, in

the left panel of figure 5 we compare the transverse momentum distributions obtained with

our implementation of POWHEG matched with either PYTHIA (red dashed line) or HERWIG

(blue solid line), for a Higgs boson of mass mH = 120GeV. In the right panel of figure 5

we plot the ratio of the distribution obtained with POWHEG+HERWIG over the one obtained

with POWHEG+PYTHIA. The HERWIG showering algorithm yields a differential cross section

larger by up to 10-20% with respect to PYTHIA in the region of small transverse momenta

(pHT ≤ 20GeV), and smaller by 5-10% for large values of pHT . We remark that this behavior

is not specific to our implementation of POWHEG. Indeed, the current implementation yields

differences of similar size when matched with HERWIG instead of PYTHIA.

In our SM analysis the top and bottom masses are renormalized in the on-shell scheme.

Therefore, the dependence of the differential cross section on the renormalization and

factorization scales does not differ significantly from the case of the HQET. As an example,

formH = 120GeV and pHT = 20GeV, we find for our POWHEG implementation an uncertainty

band of [−16%,+21%] around the central value when the factorization and renormalization

scales are varied in a range between 0.5mH and 2mH while keeping the ratio of the two

scales in the range [0.5, 2]. In the case of the HQET the corresponding uncertainty band

is [−16%,+20%].

The phenomenological relevance of the finite quark mass effects can be established by

comparing the size of the latter to the most accurate estimate of the theoretical uncertainty

band for the Higgs transverse momentum distribution. This band can be found e.g. in

ref. [88], where NNLO-QCD results in the HQET have been matched analytically with the

effects of soft-gluon resummation. For mH = 165GeV and 10GeV ≤ pHT ≤ 60GeV, the

band width, for a variation of the factorization, renormalization and resummation scales in

a range between 0.5mH and 2mH (while keeping the ratio of any two scales in the range

[0.5, 2]), amounts to [−8%,+12%] with respect to the central value computed with all the

scales set equal to mH . For the same value of mH and range of pHT , we find that the mass

effects on the shape of the Higgs transverse momentum distribution range between −8%

and +8%, i.e. they are of the same size as the uncertainty band of ref. [88].
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4 MSSM results

We extended our implementation of the gluon-fusion Higgs production process in POWHEG

to describe also the production of the neutral CP-even bosons of the MSSM, h and H.

Differently from the case of the SM, the CP-even Higgs boson masses of the MSSM can be

predicted in terms of the other parameters of the model. At the tree level it is customary

to consider the pseudoscalar mass mA and tanβ as free parameters which, together with

mZ , determine the masses mh and mH of the CP-even Higgs bosons and their couplings to

the quarks (as well as to the squarks). Radiative corrections, however, induce in the Higgs

masses and couplings a dependence on all of the MSSM parameters (see, e.g., ref. [108, 109]).

When studying Higgs boson production in the MSSM, therefore, it is necessary to compute

the entire spectrum of masses and couplings of the model in a consistent way, starting from

a given set of input parameters. In our numerical analysis, we use the code SoftSusy [110]

to compute the MSSM spectrum starting from a set of running parameters expressed

in the DR renormalization scheme. However, it is in principle possible to interface our

calculation of the Higgs production cross section with other spectrum calculators (such as,

e.g., FeynHiggs [111, 112]) that adopt different choices of renormalization scheme for the

input parameters.

4.1 Modifications in POWHEG

In order to describe the production of the neutral CP-even bosons of the MSSM, three

modifications to the SM implementation of POWHEG are required: a rescaling of the Higgs-

quark couplings in the top and bottom quark contributions, the introduction of all the

contributions from diagrams involving superpartners, and, finally, a rearrangement of the

EW corrections (which have been computed only in the SM case).

For the production of the lightest scalar, h, the normalization factors for the Higgs-

quark couplings entering the functions H1ℓ, H2ℓ, Agg, Aqg, Aqq̄ in section 3.1 become

λt =
cosα

sinβ
, λb = − sinα

cosβ
, (4.1)

where α is the effective mixing angle that diagonalizes the radiatively corrected mass matrix

in the CP-even Higgs sector. The corresponding normalization factors for the production

of the heaviest scalar, H, can be obtained from eq. (4.1) through the replacements cosα →
sinα in λt and − sinα → cosα in λb.

Diagrams with a squark running in the loop give an additional contribution to the

one-loop form factor H1ℓ:

∆H1ℓ = 4TF

∑

q̃i

λq̃i

m2
q̃i

yq̃i
[
1 + yq̃i ln

2 (xq̃i)
]
, (4.2)

where the sum runs over the six flavors for the squarks q̃i and the two mass eigenstates

(i = 1, 2) for each flavor. The variables yq̃i and xq̃i are defined in analogy to yq and xq
in eq. (3.2), and the couplings for the stop and sbottom mass eigenstates t̃1 and b̃1 to the
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lightest scalar h read

λt̃1
= −sinα

sinβ

{
−1

2
sin 2θt µmt +

1

8
m2

Z
sin 2β

[
1 + cos 2θt

(
1− 8

3
sin2 θW

)]}
(4.3)

+
cosα

sinβ

{
m2

t +
1

2
sin 2θtAtmt −

1

4
m2

Z
sin2 β

[
1 + cos 2θt

(
1− 8

3
sin2 θW

)]}
,

λb̃1
= − sinα

cosβ

{
m2

b +
1

2
sin 2θbAbmb −

1

4
m2

Z
cos2 β

[
1 + cos 2θb

(
1− 4

3
sin2 θW

)]}

+
cosα

cosβ

{
−1

2
sin 2θb µmb +

1

8
m2

Z
sin 2β

[
1 + cos 2θb

(
1− 4

3
sin2 θW

)]}
. (4.4)

In the equations above µ is the higgsino mass parameter in the MSSM superpotential,

Aq (for q = t, b) are the soft SUSY-breaking Higgs-squark couplings, θq are the left-right

squark mixing angles and θW is the Weinberg angle. The couplings for the squark mass

eigenstates t̃2 and b̃2 can be obtained from the corresponding couplings for t̃1 and b̃1 through

the replacements sin 2θq → − sin 2θq and cos 2θq → − cos 2θq. The squark couplings to the

heaviest scalar H can be obtained from the squark couplings to h through the replacements

− sinα → cosα and cosα → sinα.

The couplings for the up-type and down-type squarks of the first two generations can

be obtained from the stop and sbottom couplings, respectively, by setting the quark mass

and the squark mixing angle to zero. However, it can be seen from eqs. (4.2)–(4.4) that all

contributions from the first two generations of squarks are suppressed by the ratio m2
Z
/m2

q̃i
.

Furthermore, there are significant cancellations among the contributions of the four squarks

in each generation (indeed, the total contribution vanishes for degenerate squark masses).

Therefore, in what follows we neglect the first two generations, and focus on the stop and

sbottom contributions.

Additional contributions to the two-loop form factor H2ℓ arise from diagrams with

squarks and gluons, with four squarks, and with quarks, squarks and gluinos. In our POWHEG

implementation we use the results of ref. [50] for the stop contributions, obtained in the

limit of vanishing Higgs mass, and the results of ref. [54] for the sbottom contributions,

obtained via an asymptotic expansion in the superparticle masses.

The functions A2, A4 and Aqq̄ entering the real emission contributions in section 3.1

also receive additional contributions from diagrams with a squark running in the loop:

∆A2(s, t, u) = TF

∑

q̃i

λq̃i

m2
q̃i

y2q̃i [b0(sq̃i , tq̃i , uq̃i) + b0(sq̃i , uq̃i , tq̃i)] , (4.5)

∆A4(s, t, u) = TF

∑

q̃i

λq̃i

m2
q̃i

y2q̃i [c0(sq̃i , tq̃i , uq̃i) + c0(tq̃i , uq̃i , sq̃i) + c0(uq̃i , sq̃i , tq̃i)] , (4.6)

∆Aqq̄(s, t, u) = TF

∑

q̃i

λq̃i

m2
q̃i

yq̃i d0(sq̃i , tq̃i , uq̃i) , (4.7)

where sq̃i , tq̃i and uq̃i are defined in analogy to sq, tq and uq in eq. (3.7). Explicit expressions

for the functions b0(sq̃i , tq̃i , uq̃i), c0(sq̃i , tq̃i , uq̃i) and d0(sq̃i , tq̃i , uq̃i) are given in ref. [14].

Finally, we need to adapt the electroweak correction δEW to the case of the MSSM.

Although a calculation of the contributions to δEW from diagrams involving superpartners
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is not currently available, we can obtain a partial estimate of the EW corrections in the

MSSM by introducing in the SM result appropriate rescaling factors for the couplings of

the Higgs boson. In particular, when the Higgs boson mass is below the threshold for real

top production the EW correction in the SM is dominated by the contribution of two-loop

diagrams involving light quarks, in which the Higgs boson couples to a gauge boson [34–

40]. We can therefore approximate the EW correction for the production of the lightest

scalar h as

δEW ≈ sin(β − α)
αem

|H1ℓ|2
[
ReH1ℓ ReG2ℓ

lf + ImH1ℓ ImG2ℓ
lf

]
, (4.8)

where the one-loop form factor H1ℓ is computed in the MSSM (i.e., it contains both the

quark and squark contributions) and the explicit expression for the two-loop EW light-

fermion contribution G2ℓ
lf can be found in ref. [40]. In the case of the production of the

heaviest scalar H the factor sin(β − α), which rescales the Higgs-gauge boson couplings,

must be replaced by cos(β − α). However, we recall that the approximation of including

only the light-fermion contributions becomes less justified when mH & 2mt.

4.2 MSSM: numerical results

In this section we present numerical results for the production of the lightest CP-even Higgs

boson, h, in a representative region of the MSSM parameter space. Events are generated

with our implementation of POWHEG, then matched with the PYTHIA PS. We compute the

total inclusive cross section, as well as the transverse momentum distribution, for the

production of a light Higgs in gluon fusion, and we compare them with the corresponding

quantities computed for a SM Higgs boson with the same mass.

For the relevant soft SUSY-breaking parameters (and for µ) we choose

mQ = mU = mD = 500 GeV , Xt = 1250 GeV ,

M3 = 2M2 = 4M1 = 400 GeV, |µ| = 200 GeV, (4.9)

where: mQ, mU and mD are the soft SUSY-breaking mass terms for stop and sbottom

squarks; Xt ≡ At − µ cotβ is the left-right mixing term in the stop mass matrix; Mi (for

i = 1, 2, 3) are the soft SUSY-breaking gaugino masses. We consider the input parameters

in eq. (4.9) as expressed in the DR renormalization scheme, at a reference scale Q of the

order of the squark masses (in particular, we take Q = 500GeV). Our choice for Xt is

modeled on the so-called “mmax
h scenario”, in which the stop-induced radiative corrections

maximize the mass of the lightest scalar h, allowing it to satisfy the lower bounds from LEP

even for relatively low values of the stop masses (for our choices of parameters the physical

masses of the two stops are around 280GeV and 660GeV, respectively). We consider both

signs for the parameter µ, keeping in mind that, in our conventions, the tanβ-dependent

corrections to the relation between the bottom mass and the bottom Yukawa coupling [113]

enhance the Higgs couplings to bottom and sbottoms for µ < 0 and suppress them for µ > 0.
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Figure 6. Ratio of the total cross section for h production in the MSSM over the cross section for

the production of a SM Higgs boson with the same mass. The plot on the left is for µ > 0 while

the plot on the right is for µ < 0.

We perform a scan on the parameters that determine the Higgs boson masses and

mixing at tree level, mA and tanβ, varying them in the ranges3 90 GeV ≤ mA ≤ 200 GeV

and 2 ≤ tanβ ≤ 50. For each value of tanβ we derive the soft SUSY-breaking Higgs-

stop coupling At from the condition on Xt, then we fix the corresponding Higgs-sbottom

coupling as Ab = At.

For each point in the parameter space, we use the code SoftSusy [110] to compute

the physical (i.e., radiatively corrected) Higgs boson masses mh and mH , and the effective

Higgs mixing angle α. We obtain from SoftSusy4 also the MSSM running quark masses m̂t

and m̂b, expressed in the DR scheme at the scale Q = 500GeV. The running quark masses

are used both in the calculation of the running stop and sbottom masses and mixing angles,

and in the calculation of the top and bottom contributions to the form factors for Higgs

boson production (the latter are computed using the DR results presented in refs. [50, 54]).

As discussed in ref. [54], the use of m̂b(Q) in the one-loop form factor for gluon fusion, H1ℓ,

induces potentially large contributions, enhanced either by tanβ or by ln(m2
b/Q

2), in the

two-loop form factor H2ℓ. We checked that our results are not significantly altered if we

compute H1ℓ in terms of the running bottom mass expressed at the lower scale Q = mh.

In figure 6 we plot the ratio of the cross section for the production of the lightest scalar

h in the MSSM over the cross section for the production of a SM Higgs boson with the

same mass. For a consistent comparison, we adopt the DR scheme in both the MSSM and

3We remark, however, that parts of the (mA, tanβ) plane considered in our study have recently been

excluded by searches for Higgs bosons decaying into tau pairs at the LHC [114, 115], albeit for different

choices of the SUSY parameters.
4In the MSSM analysis we use Mt = 173.1GeV, mb(mb) = 4.16GeV and αs(mZ) = 0.1172 as inputs for

SoftSusy.
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Figure 7. Ratio of the full cross section for h production in the MSSM over the approximated

cross section computed with only quarks running in the loops. The plot on the left is for µ > 0

while the plot on the right is for µ < 0.

the SM calculations. The plot on the left is obtained with µ > 0, while the plot on the

right is obtained with µ < 0. In order to interpret the plots, it is useful to recall that

for small values of mA it is the heaviest scalar H that has SM-like couplings to fermions,

while the coupling of h to top (bottom) quarks is suppressed (enhanced) by tanβ. In the

lower-left region of the plots, with small mA and moderate tanβ, the enhancement of the

bottom contribution does not compensate for the suppression of the top contribution, and

the MSSM cross section is smaller than the corresponding SM cross section. On the other

hand, for sufficiently large tanβ (in the lower-right region of the plots) the enhancement

of the bottom contribution prevails, and the MSSM cross section becomes larger than the

corresponding SM cross section. For µ < 0 the coupling of h to bottom quarks is further

enhanced by the tanβ-dependent threshold corrections [113], and the ratio between the

MSSM and SM predictions can significantly exceed a factor of ten. Finally, for sufficiently

large mA, i.e. when the couplings of h to quarks approach their SM values, the MSSM

cross section is smaller than the SM cross section.

It is interesting to note that for intermediate values of mA there is a band along which

the two cross sections are similar to each other. Indeed, the observation of a scalar particle

with cross section in agreement with the SM prediction does not necessarily imply that the

Higgs boson is the SM one. However, as will be discussed below, a more detailed study of

the Higgs kinematic distributions can help discriminate between the two models.

To assess the genuine effect of the squark contributions (as opposed to the effect of the

modifications in the Higgs-quark couplings), we plot in figure 7 the ratio of the full MSSM

cross section for h production over the approximated MSSM cross section computed with

only quarks running in the loops. As in figure 6, the plot on the left is obtained with

µ > 0, while the plot on the right is obtained with µ < 0. We observe that, in most of
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Figure 8. Left: ratio of the transverse momentum distribution for the lightest scalar h in the MSSM

over the distribution for a SM Higgs boson with the same mass. Right: ratio of the corresponding

shapes.

the considered region of the MSSM parameter space, the squark contributions reduce the

total cross section. We identify three regions: i) for sufficiently large tanβ and sufficiently

small mA the squark contribution is modest, ranging between −10% and +5%; this region

roughly coincides with the one in which the total MSSM cross section is dominated by

the tanβ-enhanced bottom quark contribution, and is larger than the SM cross section;

ii) a transition region, where the corrections rapidly become as large as −30%; this region

coincides with the one in which the SM and MSSM cross sections are similar to each other;

iii) for sufficiently large mA the squark correction is almost constant, ranging between

−40% and −30%; this region coincides with the one in which the MSSM cross section is

smaller than the corresponding SM cross section.

We now discuss the distribution of the transverse momentum phT of a light scalar h,

considering two distinct scenarios. First, we take a point in the MSSM parameter space

(mA = 200GeV, tanβ = 10 and µ > 0) in which the coupling of h to the bottom quark is

not particularly enhanced with respect to the SM value, so that the bottom contribution to

the cross section is not particularly relevant. Because a light Higgs boson cannot resolve the

top and squark vertices, unless we consider very large transverse momentum, we expect the

form of the phT distribution to be very similar to the one for a SM Higgs boson of equal mass,

the two distributions just differing by a scaling factor related to the total cross section.

This is illustrated in the left plot of figure 8, where we show the ratio of the transverse

momentum distribution for h over the transverse momentum distribution for a SM Higgs

boson of equal mass. In the right plot of figure 8 we show the ratio of the corresponding

shapes, i.e. the distributions normalized to the corresponding cross sections. This ratio, as

expected, is close to one in most of the phT range.

We then consider the opposite situation, namely when the coupling of h to the bottom

quark is significantly enhanced. In this situation two tree-level channels, i.e. bb̄ → gh and

bg → bh, can also contribute to the production mechanism and influence the shape of the

phT distribution [71, 72]. Leaving a study of the effects of those additional channels to a

future analysis, we will now illustrate how the kinematic distribution of the Higgs boson
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Figure 9. Ratio of the transverse momentum distribution for the lightest scalar h in the MSSM

over the distribution for a SM Higgs with the same mass. The six plots correspond to different

choices of mA and tanβ for which the MSSM and SM predictions for the total cross section agree

within 5%. The plots on the left are for µ > 0 while the plots on the right are for µ < 0.

can help discriminate between the SM and the MSSM. The six plots in figure 9 correspond

to different points in the (mA, tanβ) plane characterized by the fact that the MSSM and

SM predictions for the total cross section agree with each other within 5% (therefore, we

are effectively comparing the shape of the transverse momentum distributions). The three

plots on the left are obtained with µ > 0, while the three plots on the right are obtained

with µ < 0. The Higgs boson masses corresponding to these points range between 114

and 122GeV (i.e., a SM Higgs with the same mass as h would not yet be excluded by

direct searches). Figure 9 shows that the region at small phT receives a positive correction

with respect to the SM result for moderate values of tanβ. The correction decreases with

increasing tanβ and eventually becomes negative at large tanβ for µ < 0. The region at

large phT shows an opposite behavior with respect to tanβ.
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Figure 10. Ratio of the transverse momentum distribution for the lightest scalar h in the MSSM

over the approximate distribution computed with only quarks running in the loops. The six plots

correspond to different choices of mA and tanβ for which the MSSM and SM predictions for the

total cross section agree within 5%. The plots on the left are for µ > 0 while the plots on the right

are for µ < 0.

In figure 10 we show, for the same six points in the (mA, tanβ) plane as in figure 9, the

ratio of the phT distribution over the approximate distribution computed with only quarks

running in the loops. Even though the light Higgs boson cannot resolve the squark loops,

we see that the squark contributions can modify the form of the phT distribution, because

of the interference with the bottom contribution. In particular, we observe that the squark

contributions may yield a positive correction on the distribution at small phT , which turns

negative for larger values of the transverse momentum. The negative correction becomes

quite flat for phT > 100GeV, and in the µ < 0 case it reaches a −50% effect at very large phT .
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5 Conclusions

We have presented a new implementation5 in the POWHEG approach of the process of Higgs

boson production via gluon fusion in the SM and in the MSSM. In the NLO-QCD contri-

butions, we have retained the exact dependence on all the particle masses in the one-loop

diagrams with real-parton emission and in the two-loop diagrams with quarks and gluons,

whereas we have employed the approximation of vanishing Higgs mass in the two-loop

diagrams involving superpartners. We have also included the effects due to the two-loop

EW corrections.

The exact mass dependence at NLO QCD and its matching with the multiple gluon

emission produced by the PYTHIA PS have important effects on the total and differential

cross sections of the Higgs boson. In the SM, the exact dependence on the bottom-quark

mass induces, for a light Higgs boson, a non-trivial distortion in the shape of the transverse

momentum distribution in the small-pHT region. The effect is comparable in size with the

current estimate of the theoretical uncertainty on this observable, which was derived in the

HQET limit in ref. [88]. In the case of a heavy Higgs boson, the role of the bottom quark

is negligible, but the exact dependence on the top-quark mass yields, with respect to the

HQET results, an increase of the transverse momentum distribution at small pHT , and a

large negative correction at large pHT .

In the MSSM, our code allows for a systematic study of the parameter space of the

model in a realistic experimental setup. As an illustration, we considered representative

choices in the MSSM parameter space, modeled on the so-called mmax
h scenario. We stud-

ied the role of the bottom diagrams and the impact of the inclusion of diagrams involving

superpartners at NLO QCD, both on the total and on the differential cross sections. In

the large-tanβ regime, where the role of the bottom quark is very relevant, the differential

distributions can receive large corrections, which cannot be described in the HQET ap-

proximation. A detailed study of the Higgs kinematic distributions could help discriminate

between the SM and the MSSM, in case a scalar particle with a cross section compatible

with the SM prediction is observed.
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