33 research outputs found
Impact of the National Institute for Health and Care Excellence (NICE) guidance on medical technology uptake: analysis of the uptake of spinal cord stimulation in England 2008-2012.
This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: The National Institute for Health and Care Excellence (NICE) Technology Appraisal Guidance on spinal cord stimulation (SCS) was published in 2008 and updated in 2012 with no change. This guidance recommends SCS as a cost-effective treatment for patients with neuropathic pain. OBJECTIVE: To assess the impact of NICE guidance by comparing SCS uptake in England pre-NICE (2008-2009) and post-NICE (2009-2012) guidance. We also compared the English SCS uptake rate with that of Belgium, the Netherlands, France and Germany. DESIGN: SCS implant data for England was obtained from the Hospital Episode Statistics (HES) database and compared with other European countries where comparable data were available. RESULTS: The HES data showed small increases in SCS implantation and replacement/revision procedures, and a large increase in SCS trials between 2008 and 2012. The increase in the total number of SCS procedures per million of population in England is driven primarily by revision/replacements and increased trial activity. Marked variability in SCS uptake at both health regions and primary care trust level was observed. CONCLUSIONS: Despite the positive NICE recommendation for the routine use of SCS, we found no evidence of a significant impact on SCS uptake in England. Rates of SCS implantation in England are lower than many other European countries.Access to the QUANTIS database to extract the relevant Hospital
Episode Statistics data was funded by Medtronic UK
DNA-Controlled Excitonic Switches
Fluorescence resonance energy transfer (FRET) is a promising means of enabling information processing in nanoscale devices, but dynamic control over exciton pathways is required. Here, we demonstrate the operation of two complementary switches consisting of diffusive FRET transmission lines in which exciton flow is controlled by DNA. Repeatable switching is accomplished by the removal or addition of fluorophores through toehold-mediated strand invasion. In principle, these switches can be networked to implement any Boolean function
Resource Modelling: The Missing Piece of the HTA Jigsaw?
Within health technology assessment (HTA), cost-effectiveness analysis and budget impact analyses have been broadly accepted as important components of decision making. However, whilst they address efficiency and affordability, the issue of implementation and feasibility has been largely ignored. HTA commonly takes place within a deliberative framework that captures issues of implementation and feasibility in a qualitative manner. We argue that only through a formal quantitative assessment of resource constraints can these issues be fully addressed. This paper argues the need for resource modelling to be considered explicitly in HTA. First, economic evaluation and budget impact models are described along with their limitations in evaluating feasibility. Next, resource modelling is defined and its usefulness is described along with examples of resource modelling from the literature. Then, the important issues that need to be considered when undertaking resource modelling are described before setting out recommendations for the use of resource modelling in HTA
Excitonic AND Logic Gates on DNA Brick Nanobreadboards
A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems
The development of burfi with date paste
851-855Burfi with date paste was prepared by mixing the date paste with khoa as per standard method. Date paste was added at 10%, 20%, 30% and 40% levels to the weight of khoa. Burfi prepared with addition of date paste up to 30% level was best accepted and resembled the control in sensory attributes. Addition of date paste into burfi changed the composition of burfi. The moisture, total solids, ash, lactose, fat, protein and HMF changed significantly however, FFA remained unchanged in final product when compared to control sample. Addition of date paste into burfi significantly increased the acidity and lowered the pH of burfi. The production cost of burfi with date paste was slightly higher than control burfi due to additional cost of date paste
Neuroprotective effect of hydroalcoholic extract of dried fruits of <i style="">Trapa bispinosa </i>Roxb<i style=""> </i>on lipofuscinogenesis and fluorescence product in brain of D-galactose induced ageing accelerated mice
378-382Effect of hydroalcoholic
extract T. bispinosa (TB) was studied
on fluorescence product and biochemical parameter like lipid peroxidation,
catalase activity and glutathione peroxidase activity in the brain of female
albino mice. Ageing was accelerated by the treatment of 0.5 ml 5% D-galactose
for 15 days. This resulted in increased fluorescence product, increase lipid peroxidation
and decrease antioxidant enzyme like glutathione peroxides and catalase in
cerebral cortex. After co-treatment with hydroalcoholic extract of TB (500
mg/kg, po) there was decrease in fluorescence product in cerebral cortex.
Moreover, TB inhibited increase lipid peroxidation and restores glutathione
peroxidase and catalase activity in cerebral cortex as compare to ageing
accelerated control group. To conclude TB found to be effective antioxidative
agent which could to some extent reverse D-galactose induced ageing changes
resulted due to oxidative damage
Ameliorative effect of ethyl pyruvate in neuropathic pain induced by chronic constriction injury of sciatic nerve
Objective: The present study was designed to investigate the ameliorative effects of ethyl pyruvate (EP) in chronic constriction injury (CCI)-induced painful neuropathy in rats. Materials and Methods: EP 50 and 100 mg/kg was administered for 21 consecutive days starting from the day of surgery. The effects of EP in the paw pressure, acetone drop, and tail heat immersion tests were assessed, reflecting the degree of mechanical hyperalgesia, cold allodynia, and spinal thermal sensation, respectively. Axonal degeneration of the sciatic nerve was assessed histopathologically. The levels of thiobarbituric acid reactive species, reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) were determined to assess oxidative stress. Key Findings: Administration of 50 and 100 mg/kg EP attenuated the reduction of nociceptive threshold in the paw pressure, acetone drop, and tail heat immersion tests. EP 100 mg/kg significantly attenuated reactive changes in histopathology and increase in oxidative stress. Conclusion: EP 100 mg/kg showed beneficial activity against nerve trauma-induced neuropathy. Hence, it can be used as a better treatment option in neuropathic pain (NP). The observed antinociceptive effects of EP may possibly be attributed to its antioxidant and anti-inflammatory activity
System for the measurement of semg and angular displacement of the ankle-foot joint complex for muscle co-activation detection in the diagnosis of foot drop pathology
The measurement of physiological variables for the assessment of pathologies is gaining a lot of strength and attention, even more so when it comes to wearable embedded systems able to offer comfort and precision in measurements. This work aimed to develop an electronic wearable sensing and wireless system that could measure the electrical activity of the Tibialis Anterior and Peroneus Longus muscles through bipolar surface electromyography; the system also identifies the muscle activations of antagonistic muscles, a phenomenon known as muscle co-activations. Sensing the angular displacement of the joint complex of the ankle in the sagittal and frontal planes through an Inertial Measurement Unit sensor system. A system with modular and smart architecture was designed and develop. It is based around five stages in charge of sensing, processing, and transmitting the data registers to a PC or a mobile device. The surface electromyography module is built around a two-channel amplifier sampling at 1 ksps/ch with a resolution of 10 bits; the angular displacement stage is based around an IMU sensor sampling at 1 ksps and 16 bits of resolution. Both data registers are transmitted wirelessly. A prototype with the architecture previously described was developed and tested. A statistical analysis of the data collected compared with commercial instruments was deployed, showing a Mean Square Error of ≤±5.5% for the sEMG and an average error of ≤±1.5∘ in the angular displacement measurements. The measurements made and the data verification protocol show that the equipment fully complies with all the technical and functional requirements of the project. Additionally, a record of muscle co-activation is presented, which can provide additional information, not only of the physiological state of the muscles but also the status of the pathology. By reducing the size of the device, improving the experimental setup and making small improvements to the hardware, the developed system opens a new panorama in the assessment and characterization of pathological conditions in real patients and therefore in the rehabilitation field