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ABSTRACT: A promising application of DNA self-assembly
is the fabrication of chromophore-based excitonic devices.
DNA brick assembly is a compelling method for creating
programmable nanobreadboards on which chromophores may
be rapidly and easily repositioned to prototype new excitonic
devices, optimize device operation, and induce reversible
switching. Using DNA nanobreadboards, we have demon-
strated each of these functions through the construction and
operation of two different excitonic AND logic gates. The
modularity and high chromophore density achievable via this
brick-based approach provide a viable path toward developing
information processing and storage systems.

KEYWORDS: DNA nanotechnology, DNA bricks, FRET, Boolean logic, nanophotonic devices

Nanophotonics exploits excitonic and plasmonic inter-
actions between light and matter on a scale below the

free-space wavelength of light.1−3 Molecular self-assembly
organizes matter with atomic precision in two- and three-
dimensions. When combined, these technologies enable the
construction of high-speed and highly compact devices that
employ near-field electromagnetic coupling to achieve high
performance.4−6 Recent work by Pistol et al. described
chromophores as single-molecule optical devices that can be
used for excitonic-based nanoscale computing, sensing, and
memory applications.7 For such applications, chromophores
must be arranged precisely and proximally to enhance the
nonradiative, dipole−dipole coupling between neighboring
chromophores. This dipole−dipole coupling facilitates an
excitonic transfer process known as Förster resonance energy
transfer (FRET).8 The distance over which FRET occurs
between chromophores with 50% efficiency, termed the Förster
radius, is typically 5 nm or less.8 Thus, a minimum requirement
for the fabrication of excitonic circuits is subnanometer
resolution control over chromophore position. In addition to
the distance between chromophores, additional factors, such as
spectral overlap and relative molecular orientation, also play a
role in the excitonic transfer efficiency. As molecular orientation
can be difficult to predict a priori, a practical approach to
excitonic circuit fabrication necessitates a framework for rapid
prototyping.
Over the past decade, the simple design rules governing

DNA self-assembly have been utilized to create a multitude of
templated architectures9−15 expanding well beyond basic
duplexes.16 Empowered by these design rules, DNA nano-
technology has been employed to predict and fabricate a variety
of nanophotonic devices,2,7,17−44 including those demonstrating

excitonic control.7,17−37 However, the majority of multi-
chromophore excitonic circuit studies have synthesized
excitonic transmission lines (i.e., wires) on single DNA
duplexes, which restricts the complexity and functionality
achievable with excitonic circuits.17−23 Notable exceptions are
the polyduplex structures recently reported by Buckhout-White
et al., which demonstrate complex excitonic circuitry using
multiarm DNA junctions.32,33 To enable greater complexity
and the assembly of multiple circuit elements, DNA origami,
has been used to fabricate excitonic devices, such as
transmission lines,24 switches,25 light-harvesting antennae,26

and logic gates.27,28 As a platform technology, DNA origami
involves folding a long DNA scaffold into a defined structure
via short DNA strands called staples.9 With DNA origami,
excitonic circuits can be synthesized by conjugating chromo-
phores to selected staple strands, but half of the structure, the
scaffold, plays only a structural role, as chromophore
conjugation to the scaffold is impractical. Consequently,
excitonic devices synthesized with DNA origami are typically
static structures that limit the feasibility of rapidly prototyping
excitonic circuitry. Since DNA nanotechnology primarily
enables chromophore positioning, and relative chromophore
orientation remains difficult to predict or control, rapid
prototyping is essential for achieving complex excitonic
functionality.31

Recently, the concept of a molecular canvas (i.e., a molecular
nanobreadboard) was introduced, whereby single-stranded
DNA (ssDNA) oligomers, called DNA bricks, self-assemble
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to form origami-like structures without the need for long
scaffold strands.12−14 Bricks consist of four unique sequence
domains that selectively hybridize to four neighboring bricks.
As structural building blocks, bricks are particularly modular for
two- (2D) and three-dimensional (3D) architectures due to a
master DNA library that can be down selected into a multitude
of molecularly precise shapes or repeated units during
assembly.45 The emergent approach of DNA brick-based
nanobreadboards enables the rapid, facile reconfiguration of
2D and 3D architectures to be achieved by simply selecting the
desired bricks from the library, whereas DNA origami requires
the redesign of all staple strands. Additionally, since a long
scaffold strand is not used within the DNA brick approach and
any DNA brick can carry covalently attached chromophores,
the achievable packing density and position control of
chromophores on a DNA brick nanobreadboard is twice that
of DNA origami.
Capitalizing on the unique aspects of DNA bricks, we

demonstrate the first excitonic wires, switches, and logic devices
prototyped on DNA brick-based nanobreadboards. In this
work, we show (1) four-chromophore systems with two
dynamically controlled inputs permitting bilevel switches that
can be coupled to demonstrate fully excitonic AND logic, and
(2) dynamic excitonic switching and logic operations controlled
by isothermal DNA reactions in stoichiometric quantities. To
facilitate prototyping of excitonic logic devices, our current
work takes advantage of the increased design flexibility of DNA
bricks over DNA origami. Indeed, because of the inability of the
scaffold strand to support chromophores, our designs could not
have been carried out using standard DNA origami (Figure
1a,b). Prototyping was expedited by the ease with which any
selected brick could be functionalized with a chosen
chromophore. Prototyping and dynamic behavior were further
facilitated by the incorporation of single stranded extensions
(tethers) on two of the bricks that served as recognition sites at
which chromophore-carrying oligomers were attached or
removed. While two designs are described in detail here,
multiple chromophore architectures are possible, thereby
enabling the exploration of any and all logic gate operations.
Additionally, in contrast to duplex-based circuits,17−23 the
brick-based nanobreadboard greatly promotes coupling of
multiple excitonic devices to achieve greater circuit complexity.
Future screening will guide optimum information processing
and storage in DNA-based excitonic devices.4−6,31

The two excitonic AND logic gates assembled on DNA brick
nanobreadboards, with differing chromophore arrangements
were designed to (1) demonstrate reconfigurability for rapid
prototyping and (2) investigate the effects of chromophore
placement on AND logic gate performance. The designs,
labeled AND logic gates 1 and 2, are illustrated in Figure 1a and
b, respectively (strand sequences and chromophore details are
provided in the Supporting Information, S1). Each nanobread-
board is a two-dimensional (6 helices × 94 base pair)
structure12 with four chromophores positioned in zigzag
(AND logic gate 1) or quasi-linear (AND logic gate 2) arrays
to form excitonic transmission lines. The nanobreadboard is
composed of three types of DNA bricks: (i) eight 21 nucleotide
(nt) strands, (ii) 18 42 nt strands, and (iii) two 58 nt strands
containing a 16 nt tether. Of the four chromophores that
constitute the AND logic gates, two are permanently attached
to the nanobreadboard (F and C, Figure 1a,b), while the other
two (T1 and T2, Figure 1a,b) are independently added to or
removed from DNA tethers via DNA hybridization and

toehold-mediated strand displacement.39 The use of tethers
allows independent control over chromophore spacing and the
numbers of base pairs involved in DNA hybridization and
strand displacement. This innovation is a significant perform-
ance advantage over previous designs in which binding to an
origami scaffold strand restricted the number of base pairs
involved in the switching reactions and necessitated the use of
excessive fuel concentrations to drive switching reactions.25

Carboxyfluorescein, commonly referred to as FAM (F), and
a cyanine derivative, Cy5 (C), served as the exciton donor (i.e.,
optical input) and acceptor (i.e., optical output) chromophores,
respectively. F (blue circle, Figure 1a) and C (red circle, Figure
1a) were covalently attached to 42 nt staple strands and were
embedded permanently into the nanobreadboard. Two
dynamic tetramethylrhodamine (TAMRA) chromophores
(excitonic logic inputs) were covalently attached to 26 nt
single-stranded (ssDNA) oligomers and acted to position the
logic inputs for AND switching. The two oligomers were
distinguishable by sequence and labeled as TAMRA 1 (i.e., T1,
logic input 1) or TAMRA 2 (i.e., T2, logic input 2) in Figure 1a
(green circles with dashed outline). T1 and T2 were designed

Figure 1. Schematic of (a) AND logic gate 1 and (b) AND logic gate 2
illustrating DNA brick reconfigurability. AND logic gates 1 and 2 only
differ by the position of FAM (blue). (c) Schematic of sequentially
switchable excitonic AND logic gate operation. Both logic gates are
initially fabricated in an OFF-state with only FAM (blue) and Cy5
(red) chromophores attached. When introduced into solution,
TAMRA (T1 and T2, green with dashed outline) functionalized
ssDNA oligomers hybridize to the corresponding recognition sites
(i.e., tethers), switching the gate into an ON-state configuration and
generating a fluorescent output signal. Following addition of T1 and
T2 to switch the AND gate to the ON-state, invasion strands (I1 and
I2) and restoration strands (R1 and R2) are sequentially added to the
sample solution to cycle between OFF- (invasion) and ON-
(restoration) states.
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with a 16 nt complementary region that attached to the
nanobreadboard tethers, leaving 10 nt toeholds for subsequent
removal by invasion strands.
Exploiting toehold-mediated strand displacement,39 ssDNA

invasion and restoration strands were designed to either
remove or restore T1 and T2 from or onto the nanobread-
boards, respectively, to enable isothermal reversible switching.
The isothermal nature of the switching processes facilitates
practical device operation and complex multielement circuit
design, both of which would be difficult to achieve if input
switching required thermal cycling. Invasion strand 1 (I1)
hybridizes with the 10 nt toehold on T1 and invasion strand 2
(I2) hybridizes with the 10 nt toehold on T2, thereby
specifically removing the corresponding chromophore from
the nanobreadboard through a three-way branch migration
process. Similar to T1 and T2, I1 and I2 are designed with a 10
nt toehold for the attachment of restoration strand 1 (R1) and
restoration strand 2 (R2), respectively. R1 and R2 completely
hybridize with the respective invasion strands, thus releasing T1
or T2 back into solution. Once released, T1 and T2 rehybridize
to the nanobreadboard tethers. It should be noted that no
additional T1 or T2 are added to the solution, which validates
the use of these logic devices in systems where inputs are
controlled by external processes (e.g., biological processes).
The R1 and R2 sequences have been specifically designed to
minimize unwanted complementary regions with the nano-
breadboard tethers, thereby reducing competition with the T1
and T2 strands. The restoration strands have only a 6 nt
overlap with the nanobreadboard tethers and a 25 nt overlap
with the invasion strands, and the free-energy is minimized by
formation of the desired complementary pairs (see Supporting
Information, S1 for further details). This design work was
accomplished using UNIQUIMER45 to generate random
sequences for all strands and NUPACK46 to analyze
thermodynamically favorable strand hybridizations via free-
energy minimization.
The excitonic AND logic gates are in the ON-state when

both T1 and T2 are attached concurrently onto the
nanobreadboard, thereby completing a FRET transmission
line that enables exciton flow from F (excited at 450 nm) to C
(monitored at 668 nm). To maximize nearest neighbor FRET
and minimize non-nearest neighbor FRET, the positions of
chromophore attachment sites have been chosen such that only
neighboring chromophores have separation distances that lie

within the Förster radius. Exciton transmission is interrupted
when either or both logic input chromophores (i.e., T1 and T2)
are removed from the nanobreadboard, resulting in an OFF-
state logic gate configuration (Figure 1c). Once T1 and T2
have been introduced into solution, the gate can be reversibly
switched between the ON- or OFF- states via the successive
addition of invasion (OFF) and restoration (ON) strands.
Figure 2 demonstrates the efficacy of the DNA brick-based

nanobreadboard for prototyping excitonic transmission lines,
switches, and logic gates. Nanobreadboards with chromophore
arrangements corresponding to each logic state were
synthesized, annealed, and filtered with Amicon centrifugal
filter units prior to obtaining spectroscopic measurements
(Supporting Information, S2.2). Panels b and c plot the
emission intensity of the logic output and illustrate the
equilibrium logic states as defined by Figure 2a for AND
gates 1 and 2, respectively, when all strands are in
stoichiometry. Clear differences in the overall excitonic
transmission efficiency are observed for different states of the
logic gates. The nonzero intensities measured for states i−iii
reflect excitonic cross-talk and bleed-through between the
chromophores present on the devices and represent the
intrinsic behaviors that vary based on the logic gate designs.
The threshold window for each gate is indicated by a shaded
gray area that delineates the region between the minimum
fluorescence obtained with the attachment of both logic input
chromophores (T1 and T2) and the maximum fluorescence
obtained with the attachment of only one logic input
chromophore (T1 or T2) for a given logic gate design. The
logic threshold (i.e., the fluorescence level at which the gate
output switches between OFF and ON) is taken to be the
median fluorescence value within the threshold window range
and is indicated by the red dashed line in Figure 2b,c. As can be
seen from the data, simply shifting the location of F by one
double helix reduced the cross-talk and overall transmission
efficiency of AND logic gate 2 relative to gate 1 but resulted in
a slightly larger threshold window. Logic gate performance is
further analyzed using the equilibrium threshold tolerance
(Table 1), which is given as a dimensionless value and is
described in further detail in Supporting Information, S5. A
larger equilibrium threshold tolerance (i.e., threshold range
relative to overall fluorescence intensity) indicates superior
logic gate performance arising from greater tolerance to errors
within the system that may arise from malformed nanobread-

Figure 2. Excitonic AND logic truth tables showing the logic values associated with the ON- (Logic Output: 1) or OFF- (Logic Output: 0) states for
the attachment (Logic Input: 1) or absence (Logic Input: 0) of T1 or T2 onto/from the nanobreadboard. Adjacent to the truth table are bar plots
representing the concentration normalized fluorescence emission at 668 nm (Logic Output) corresponding to each logic state for AND logic gate
designs 1 (b) and 2 (c). The threshold windows are indicated by the shaded gray areas. The logic threshold defines the midpoint of the logic
threshold window and is indicated by a red dashed line in each bar chart. All spectra were collected by exciting F at 450 nm. Spectra were normalized
by nanobreadboard concentration (∼25 nM).
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boards and deviations from stoichiometry during synthesis and
operation. While AND logic gate 2 exhibited a slightly larger
threshold window range, it showed a greater equilibrium
threshold tolerance by approximately a factor of 2 in its
equilibrium states, which highlights the impact that small design
changes can have on device performance based on multiple
factors involved in the excitonic energy transfer.
In contrast to the static equilibrium logic gate data shown in

Figure 2, Figure 3 summarizes the isothermal dynamic
switching results (i.e., fluorescence emission changes as a
function of time) showing the dynamics of sequentially
switchable AND logic operations for both gate designs. The
data were obtained by exciting F at 450 nm and monitoring C
emission at 668 nm. Figure 3 shows sequential switching for
both AND logic gate 1 (Figure 3a,b) and logic gate 2 (Figure
3c,d) through three switching cycles. A switching cycle is
defined as the transition of logic from OFF (Logic Output: 0)
to ON (Logic Output: 1) and back to OFF resulting from the
successive addition of restoration (R) and invasion (I) strands
in stoichiometric amounts at ∼20 min intervals. Reflective of
dynamic changes in overall excitonic transmission efficiencies,
the data show clearly distinguishable output intensities for the

various logic states, even after three full switching cycles. State
transition rates were consistent throughout switching and were
highest for the hybridization of T1 to the nanobreadboard, both
initially and upon restoration. To enable analysis of intrinsic
gate dynamics and account for extrinsic effects of dilution and
photobleaching, each data set was subjected to a normalization
procedure that is outlined in the Supporting Information, S3.
The analysis and tabulation of switching rates for each
transition are provided in Supporting Information, S4.
For the dynamic switching data, a dynamic threshold

tolerance was used to assess the performance of each logic
gate. The dynamic threshold tolerance for each logic gate
design exhibited a reduction resulting from the threshold
window loss that occurred with each successive switching cycle
(Table 1). The threshold window loss per cycle is a qualitative
parameter used to assess the reduction in threshold window
with successive switching cycles. The threshold window loss
values for each logic gate design were calculated using the
stepwise ratios of C emission fluorescence intensities for each
cycle, adjusted for dilution (Table 1). AND logic gate 2 was
found to exhibit ∼25% lower threshold window loss over three
switching cycles than AND logic gate 1. This smaller threshold
window loss for AND logic gate 2 results in a higher average
dynamic threshold tolerance for the total dynamic switching
data, as shown in Table 1, where AND logic gate 2 has a
dynamic threshold tolerance almost twice that of AND logic
gate 1.
The results obtained from AND logic gates 1 and 2 illustrate

the advantage of utilizing a reconfigurable nanobreadboard to
rapidly prototype, evaluate, and optimize excitonic logic gate
designs. Although both designs exhibit successful excitonic
AND logic gate operations, significant differences were

Table 1. AND Logic Gate Operational Parameters

operational parameters AND logic gate 1 AND logic gate 2

equilibrium threshold tolerance 0.16 0.31
dynamic threshold tolerancea 0.06 0.11
threshold window loss/cycleb 40.5% loss 29.9% loss

aAverage threshold tolerance values for two separate reaction kinetics
data sets. bAverages calculated using reaction kinetics data from three
separate switching cycles.

Figure 3. Dynamic switching data demonstrating sequentially switchable excitonic AND logic functionality by examining fluorescent emission
changes resulting from injecting TAMRA (T1 or T2), invasion (I1 or I2), or restoration (R1 or R2) strands. The data were obtained by exciting F at
450 nm and monitoring the fluorescence of C at 668 nm. Repeated AND logic operation by introducing (a) T1 to AND logic gate 1 prior to T2; (b)
T2 to AND logic gate 1 prior to T1; (c) T1 to AND logic gate 2 prior to T2; (d) T2 to AND logic gate 2 prior to T1. All data were normalized by
concentration and corrected for photobleaching (Supporting Information, S3). The logic threshold (red dashed line) defines the midpoint of the
logic threshold window. The dynamic threshold window (gray area) defines the region between the minimum fluorescence obtained with the
attachment of both logic input chromophores (T1 and T2) and the maximum fluorescence obtained with the attachment of one logic input
chromophore (T1 or T2) for a given logic gate design operated over three complete OFF−ON−OFF switching cycles.
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observed in device performance. A number of factors may
influence the performance of the logic gates including: (i) the
Förster radius, (ii) chromophore orientation, (iii) photo-
bleaching, (iv) incomplete hybridization for DNA-controlled
dynamic processes, and (v) base-pair quenching. The
magnitude and relative contributions of each of these factors
are quite difficult to predict a priori and can be complicated to
decouple or correct for. Examples of these complicating factors
can be observed by assessing the fluorescence of the
equilibrium logic states for each AND logic gate design (Figure
2), where one can qualitatively compare the relative FRET
efficiencies between the two designs. According to Förster
theory, FRET is dependent on the relative distances and
orientations between two chromophores.8 For a chromophore
separation that is large compared to the Förster radius, FRET
efficiency decreases with distance as a function of 1/r6.8 The
relative orientation between chromophores is characterized by
the coupling factor, κ2, and is very often approximated to be 2/
3 due to the rapid randomization of the chromophore
dipoles.8,47−51 Because the excitation wavelength of 450 nm
was chosen to lie outside of the C absorption range (Figure
S2.4, Supporting Information) and all spectra were normalized
by concentration, the differences in emission at 668 nm (Figure
2) most likely result from altering the attachment point of F.
For AND logic gates 1 and 2, in the initial OFF-state (i.e.,
without T1 and T2), the distances between the attachment
points of F and C are calculated as 10.72 and 10.54 nm,
respectively (Figure 1a,b). If the change of attachment point
translates only into a corresponding change of distance between
F and C, one would expect ∼10% greater direct FRET for AND
logic gate 2 than AND logic gate 1 in the OFF-state. However,
in actuality AND logic gate 1 shows ∼40% greater emission at
668 nm than does AND logic gate 2. This difference between
the observed fluorescence and that calculated based on the
change in distance between attachment sites may arise from the
flexible ethylene spacers that link the chromophore to the DNA
causing the position of the chromophores to not coincide
precisely with the attachment point of the DNA. Additionally,
since chromophores tend to intercalate between bases or find
preferential orientations, κ2 need not be the same for the two
gates.50,51 Finally, it has been shown in previous studies that
specific nucleotide bases may contribute to the fluorescence-
quenching of certain chromophores via photoinduced electron
transfer, which may be a contributing factor within this case.52

Since these potential complicating factors are not easily
predictable a priori nor discernible from the static equilibrium
state data, the prototyping capability of DNA brick nanobread-
boards is crucial for quickly assessing device performance.
The dynamic switching data shown in Figure 3 reveals a

highly dynamic system consisting of multiple competing time-
dependent effects. The extrinsic factor that seems the most
detrimental to the logic performance is the photobleaching of
F, which leads to a time-dependent decrease in output
fluorescence intensity (see Supporting Information, S3). The
rate of photobleaching of F is proportional to the intensity of
the excitation light. Conversely, the rate of photobleaching is
reduced when exciton transfer from the initially excited donor
chromophore F occurs between chromophores along the FRET
transmission line (Supporting Information, S3). Because FRET
is an emission process that shortens the excited state lifetime of
F, it acts as a protecting agent against photobleaching, which is
the result of an excited state chemical reaction process.53−55

Accordingly, because the act of dynamically attaching

chromophores onto the nanobreadboard and completing the
transmission line increases the FRET efficiency between the
chromophores, the effect of photobleaching on the system is
reduced. A first principle account of this effect is impractical
because of the high degree of difficulty to determine factors
such as how the concentration of reactive oxygen species varies
with time. In lieu of this, we have opted to correct for
photobleaching by normalizing for an average photobleaching
effect that consequently may correct for other effects, including
the incomplete hybridization of strands. It should also be noted
that, as an extrinsic factor, photobleaching is observed primarily
as an artifact to our efforts to measure the kinetics of state
changes by continually monitoring the C output emission, and
does not constitute an intrinsic defect in the logic gate design.
Ideally, the threshold window loss per cycle would be a

measure of the percentage of strands that incompletely
hybridize to form the desired product. Because the injection
strands are identical between logic gate designs and were shown
to give similar rate constants (Supporting Information, S4) that
are comparable to previous work,25 it is assumed that they do
not contribute to threshold window loss. Rather, since the
injection strands are added in equimolar amounts (in contrast
to our previous work),25 it is likely that concentration and
volumetric errors result in one or more of the following three
processes involving incomplete hybridization between (i) T1,
T2, and the nanobreadboard tethers, (ii) the invasion strands
(i.e., I1 and I2) with T1 and T2, or (iii) the restoration strands
(i.e., R1 and R2) with the invasion strands. All three of these
processes would result in a threshold window loss by either
decreasing the ON-state fluorescence (i.e., processes i and iii)
or increasing the OFF-state fluorescence (i.e., process ii).
Decoupling the incomplete hybridization process from the
effects of photobleaching is beyond the scope of this report.
However, this does show DNA brick-based nanobreadboards
and DNA hybridization/strand-displacement can both expedite
the trial and error process, as well as give some qualitative
insight into the factors that contribute to differences in device
performance. Further improvements may be achieved by (i)
using chromophore types that are less prone to photobleaching,
(ii) modifying the chromophore arrangements to increase
FRET along the transmission line (e.g., decreased chromophore
separation distance and/or shorter tethers), or (iii) adding
injection strands in excess to decrease the occurrence of
incomplete hybridization, thereby improving AND logic gate
performance by decreasing the threshold window loss and
resultant threshold tolerance reduction.
In this study, we report the synthesis and isothermal dynamic

operation of two excitonic AND logic gates formed from four-
chromophore transmission lines on DNA brick-based nano-
breadboards. We establish that DNA brick-based nanobread-
boards can be employed as a convenient means by which to
rapidly prototype and evaluate the relative performance of
excitonic-based devices. This is accomplished by two means:
(1) through the modular nature of the DNA brick-based design
in which only a small subset of the ssDNA oligomers requires
redesign in order to change chromophore attachment points
and (2) by DNA hybridization and toehold-mediated strand
displacement to repeatedly attach and remove chromophore-
functionalized strands to and from nanobreadboard tethers to
allow dynamic operation. Two excitonic AND logic gate
designs were investigated to demonstrate (1) reconfigurable
excitonic-based device operability on DNA brick architectures
and (2) isothermal sequentially switchable AND logic gate
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functionality. Both designs showed successful AND logic gate
switching that was followed for three switching cycles.
Additionally, it was found that the AND logic gate 2 design
yielded better equilibrium and dynamic logic gate performance.
Further optimization of chromophore types, chromophore
arrangements, and amount of injection strand excess may lead
to even better device performance. Because DNA brick
nanobreadboards are composed entirely of synthetic DNA
oligomers, chromophores can be covalently attached at any
base position, thereby permitting a chromophore density twice
that of DNA origami. The higher chromophore density,
modularity, and greater circuit complexity that can be achieved
by this approach may offer the keys to constructing excitonic-
based information processing and storage systems.
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