915 research outputs found

    Candidate hypervelocity stars of spectral type G and K revisited

    Full text link
    Hypervelocity stars (HVS) move so fast that they are unbound to the Galaxy. When they were first discovered in 2005, dynamical ejection from the supermassive black hole (SMBH) in the Galactic Centre (GC) was suggested as their origin. The two dozen HVSs known today are young massive B stars, mostly of 3-4 solar masses. Recently, 20 HVS candidates of low mass were discovered in the Segue G and K dwarf sample, but none of them originates from the GC. We embarked on a kinematic analysis of the Segue HVS candidate sample using the full 6D phase space information based on new proper motion measurements. Their orbital properties can then be derived by tracing back their trajectories in different mass models of our Galaxy. We present the results for 14 candidate HVSs, for which proper motion measurements were possible. Significantly lower proper motions than found in the previous study were derived. Considering three different Galactic mass models we find that all stars are bound to the Galaxy. We confirm that the stars do not originate from the GC. The distribution of their proper motions and radial velocities is consistent with predictions for runaway stars ejected from the Galactic disk by the binary supernova mechanism. However, their kinematics are also consistent with old disk membership. Moreover, most stars have rather low metallicities and strong α\alpha-element enrichment as typical for thick disk and halo stars, whereas the metallicity of the three most metal-rich stars could possibly indicate that they are runaway stars from the thin disk. One star shows halo kinematics.Comment: A&A letter accepte

    The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia : further evidence and meta-analysis

    Get PDF
    NO is a pleiotropic signaling molecule and has an important role in cognition and emotion. In the brain, NO is produced by neuronal nitric oxide synthase (NOS-I, encoded by NOS1) coupled to the NMDA receptor via PDZ. interactions; this protein-protein interaction is disrupted upon binding of NOS1 adapter protein (encoded by NOS1AP) to NOS-I. As both NOS1 and NOS1AP were associated with schizophrenia, we here investigated these genes in greater detail by genotyping new samples and conducting a meta-analysis of our own and published data. In doing so, we confirmed association of both genes with schizophrenia and found evidence for their interaction in increasing risk towards disease. Our strongest finding was the NOS1 promoter SNP rs41279104, yielding an odds ratio of 1.29 in the meta-analysis. As findings from heterologous cell systems have suggested that the risk allele decreases gene expression, we studied the effect of the variant on NOS1 expression in human post-mortem brain samples and found that the risk allele significantly decreases expression of NOS1 in the prefrontal cortex. Bioinformatic analyses suggest that this might be due the replacement of six transcription factor binding sites by two new binding sites as a consequence of proxy SNPs. Taken together, our data argue that genetic variance in NOS1 resulting in lower prefrontal brain expression of this gene contributes to schizophrenia liability, and that NOS1 interacts with NOS1AP in doing so. The NOS1-NOS1AP PDZ interface may thus well constitute a novel target for small molecules in at least some forms of schizophrenia. PostprintPeer reviewe

    Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist

    Get PDF
    A scanning-helium-ion-beam microscope is now commercially available. This microscope can be used to perform lithography similar to, but of potentially higher resolution than, scanning electron-beam lithography. This article describes the control of this microscope for lithography via beam steering/blanking electronics and evaluates the high-resolution performance of scanning helium-ion-beam lithography. The authors found that sub-10 nm-half-pitch patterning is feasible. They also measured a point-spread function that indicates a reduction in the micrometer-range proximity effect typical in electron-beam lithography.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Boolean Dynamics with Random Couplings

    Full text link
    This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the sizes of their basins of attraction, and the flow of information through the systems. In the limit of infinite N, there is a phase transition between a chaotic and an ordered phase, with a critical phase in between. We argue that the behavior of this system depends significantly on the topology of the network connections. If the elements are placed upon a lattice with dimension d, the system shows correlations related to the standard percolation or directed percolation phase transition on such a lattice. On the other hand, a very different behavior is seen in the Kauffman net in which all spins are equally likely to be coupled to a given spin. In this situation, coupling loops are mostly suppressed, and the behavior of the system is much more like that of a mean field theory. We also describe possible applications of the models to, for example, genetic networks, cell differentiation, evolution, democracy in social systems and neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical Sciences Serie

    Towards the integration and development of a cross-European research network and infrastructure:the DEterminants of DIet and Physical ACtivity (DEDIPAC) Knowledge Hub

    Get PDF
    To address major societal challenges and enhance cooperation in research across Europe, the European Commission has initiated and facilitated ‘joint programming’. Joint programming is a process by which Member States engage in defining, developing and implementing a common strategic research agenda, based on a shared vision of how to address major societal challenges that no Member State is capable of resolving independently. Setting up a Joint Programming Initiative (JPI) should also contribute to avoiding unnecessary overlap and repetition of research, and enable and enhance the development and use of standardised research methods, procedures and data management. The Determinants of Diet and Physical Activity (DEDIPAC) Knowledge Hub (KH) is the first act of the European JPI ‘A Healthy Diet for a Healthy Life’. The objective of DEDIPAC is to contribute to improving understanding of the determinants of dietary, physical activity and sedentary behaviours. DEDIPAC KH is a multi-disciplinary consortium of 46 consortia and organisations supported by joint programming grants from 12 countries across Europe. The work is divided into three thematic areas: (I) assessment and harmonisation of methods for future research, surveillance and monitoring, and for evaluation of interventions and policies; (II) determinants of dietary, physical activity and sedentary behaviours across the life course and in vulnerable groups; and (III) evaluation and benchmarking of public health and policy interventions aimed at improving dietary, physical activity and sedentary behaviours. In the first three years, DEDIPAC KH will organise, develop, share and harmonise expertise, methods, measures, data and other infrastructure. This should further European research and improve the broad multi-disciplinary approach needed to study the interactions between multilevel determinants in influencing dietary, physical activity and sedentary behaviours. Insights will be translated into more effective interventions and policies for the promotion of healthier behaviours and more effective monitoring and evaluation of the impacts of such intervention

    The MentDis_ICF65+ study protocol: prevalence, 1-year incidence and symptom severity of mental disorders in the elderly and their relationship to impairment, functioning (ICF) and service utilisation.

    Get PDF
    Background: The EU currently lacks reliable data on the prevalence and incidence of mental disorders in older people. Despite the availability of several national and international epidemiological studies, the size and burden of mental disorders in the elderly remain unclear due to various reasons. Therefore, the aims of the MentDis_ICF65+ study are (1) to adapt existing assessment instruments, and (2) to collect data on the prevalence, the incidence, and the natural course and prognosis of mental disorders in the elderly. Method/design: Using a cross-sectional and prospective longitudinal design, this multi-centre study from six European countries and associated states (Germany, Great Britain, Israel, Italy, Spain, and Switzerland) is based on age-stratified, random samples of elderly people living in the community. The study program consists of three phases: (1) a methodological phase devoted primarily to the adaptation of age- and gender-specific assessment tools for older people (e.g., the Composite International Diagnostic Interview, CIDI) as well as psychometric evaluations including translation, back translation; (2) a baseline community study in all participating countries to assess the lifetime, 12 month and 1 month prevalence and comorbidity of mental disorders, including prior course, quality of life, health care utilization and helpseeking, impairments and participation and, (3) a 12 month follow-up of all baseline participants to monitor course and outcome as well as examine predictors. Discussion: The study is an essential step forward towards the further development and improvement of harmonised instruments for the assessment of mental disorders as well as the evaluation of activity impairment and participation in older adults. This study will also facilitate the comparison of cross-cultural results. These results will have bearing on mental health care in the EU and will offer a starting point for necessary structural changes to be initiated for mental health care policy at the level of mental health care politics

    How to Build Collective Capabilities: The 3C-Model for Grassroots-led Development

    Get PDF
    Capabilities need to be built from the bottom-up. Social innovations at the grassroots seek to present new solutions to existing social problems. However, since the poor suffer from limitations on their individual capabilities and agency, they engage in acts of collective agency to generate new collective capabilities that each individual alone would not be able to achieve. The question is: how can these acts of collective agency be initiated, supported and sustained in practice? What roles can development actors (such as the state, donors and NGOs) play in supporting these acts of collective agency? Drawing on the literature on social innovation, the capability approach, participation and empowerment, the paper argues that three crucial C-processes are integral conditions for promoting successful, scalable and sustainable social innovations at the grassroots, namely: (1) Conscientization; (2) Conciliation and (3) Collaboration. By linking the individual, collective and institutional levels of analysis, the paper demonstrates the importance of individual behavioural changes, collective agency and local institutional reforms for the success, sustainability and scalability of social innovations at the grassroots. The paper acknowledges conflict, capture and cooptation as potential limitations and recognizes the role of contextual factors in initiating, implementing and sustaining social innovations at the grassroots
    corecore