5,391 research outputs found

    Structure-Based Rationale for Selectivity in the Asymmetric Allylic Alkylation of Cycloalkenyl Esters Employing the Trost ‘Standard Ligand’ (TSL): Isolation, Analysis and Alkylation of the Monomeric form of the Cationic η3-Cyclohexenyl Complex [(η3-c-C6H9)Pd(TSL)]+

    Get PDF
    The solution-phase structures of the monomeric forms of the cationic Pd-η3-allyl and Pd-η3-cyclohexenyl complexes [Pd(R,R)-1(η3-C3H5)]+ (7+) and [Pd(R,R)-1(η3-C6H9)]+ (8+) bearing the trans-cyclohexylenediamine-based Trost ‘Standard Ligand’ (R,R)-1 have been elucidated by NMR, isotopic labeling and computation. In both complexes, (R,R)-1 is found to adopt a C1-symmetric conformation, leading to a concave shape in the 13-membered chelate in which one amide group in the chiral scaffold projects its NH unit out of the concave surface in close vicinity to one allyl terminus. The adjacent amide has a reversed orientation and projects its carbonyl group out of the concave face in the vicinity of the opposite allyl terminus. Stoichiometric and catalytic asymmetric alkylations of [8+][X−] by MCHE2 (E = ester, M = ‘escort’ counterion, X = Pd allyl counterion) show the same selectivities and trends as have been reported for in situ-generated catalysts, and a new model for the enantioselectivity has been explored computationally. Three factors are found to govern the regioselectivity (pro-S vs pro-R) of attack of nucleophiles on the η3-C6H9 ring in 8+ and thus the ee of the alkylation product: (i) a pro-R torquoselective bias is induced by steric interaction of the η3-C6H9 moiety with one phenyl ring of the ligand; (ii) pro-S delivery of the nucleophile can be facilitated by hydrogen-bonding with the concave orientated amide N−H; and (iii) pro-R delivery of the nucleophile can be facilitated by escort ion (M) binding to the concave orientated amide carbonyl. The latter two opposing interactions lead to the selectivity of the alkylation being sensitive to the identities of X− and M+. The generation of 8+ from cyclohexenyl ester substrate has also been explored computationally. The concave orientated amide N−H is able to activate the leaving group of the allylic ester by hydrogen bonding to its carbonyl group. However, this interaction is only feasible for the (S)-enantiomer of substrate, leading to the prediction of a powerful kinetic resolution (kS kR), as is found experimentally. This new model involving two regiochemically distinct (NH) and (CO) locations for nucleofuge or nucleophile binding, may prove of broad utility for the interpretation of the selectivity in asymmetric allylic alkylation reactions catalyzed by Pd complexes of (R,R)-1 and related ligands.<br/

    Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-Thioesters

    Get PDF
    Supporting Information Available: Experimental procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.A method for catalytic asymmetric γ sulfenylation of carbonyl compounds has been developed. In the presence of an appropriate catalyst, thiols not only add to the γ position of allenoates, overcoming their propensity to add to the β position in the absence of a catalyst, but do so with very good enantioselectivity. Sulfur nucleophiles are now added to the three families of nucleophiles (carbon, nitrogen, and oxygen) that had earlier been shown to participate in catalyzed γ additions. The phosphine catalyst of choice, TangPhos, had previously only been employed as a chiral ligand for transition metals, not as an efficient enantioselective nucleophilic catalyst.National Institutes of Health (U.S.)National Institute of General Medical Sciences (U.S.) (R01-GM57034)Merck & Co.Novartis (Firm

    Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(II) and palladium(II).

    Get PDF
    The synthesis, spectroscopic and X-ray structural characterization of copper(II) and palladium(II) complexes with aziridine ligands as 2-dimethylaziridine HNCH2CMe2 (a), the bidentate N-(2-aminoethyl)aziridines C2H4NC2H4NH2 (b) or CH2CMe2NCH2CMe2NH2 (c) as well as the unsaturated azirine NCH2CPh (d) are reported. Cleavage of the cyclometallated Pd(II) dimer [μ-Cl(C6H4CHMeNMe2-C,N)Pd]2 with ligand a yielded compound [Cl(NHCH2CMe2)(C6H4CHMe2NMe2-C,N)Pd] (1a). The reaction of the aziridine complex trans-[Cl2Pd(HNC2H4)2] with an excess of aziridine in the presence of AgOTf gave the ionic chelate complex trans-[(C2H4NC2H4NH2-N,N′)2Pd](OTf)2 (2b) which contains the new ligand b formed by an unexpected insertion and ring opening reaction of two aziridines (“aziridine dimerization”). CuCl2 reacted in pure HNC2H4 or HNCH2CMe2 (b) again by “dimerization” to give the tris-chelated ionic complex [Cu(C2H4NC2H4NH2-N,N′)3]Cl2 (3b) or the bis-chelated complex [CuCl(C2H2Me2NC2H2Me2NH2-N,N′)2]Cl (4c). By addition of 2H-3-phenylazirine (d) to PdCl2, trans-[Cl2Pd(NCH2CPh)2] (5d) was formed. All new compounds were characterized by NMR, IR and mass spectra and also by X-ray structure analyses (except 3b). Additionally the cytotoxic effects of these complexes were examined on HL-60 and NALM-6 human leukemia cells and melanoma WM-115 cells. The antimicrobial activity was also determined. The growth of Gram-positive bacterial strains (S. aureus, S. epidermidis, E. faecalis) was inhibited by almost all tested complexes at the concentrations of 37.5–300.0 μg mL−1. However, MIC values of complexes obtained for Gram-negative E. coli and P. aeruginosa, as well as for C. albicans yeast, mostly exceeded 300 μg mL−1. The highest antibacterial activity was achieved by complexes 1a and 2b. Complex 2b also inhibited the growth of Gram-negative bacteria. Graphical abstract: Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(ii) and palladium(ii

    Light-intensity physical activity and cardiometabolic biomarkers in US adolescents

    Get PDF
    BackgroundThe minimal physical activity intensity that would confer health benefits among adolescents is unknown. The purpose of this study was to examine the associations of accelerometer-derived light-intensity (split into low and high) physical activity, and moderate- to vigorous-intensity physical activity with cardiometabolic biomarkers in a large population-based sample.MethodsThe study is based on 1,731 adolescents, aged 12&ndash;19 years from the 2003/04 and 2005/06 National Health and Nutrition Examination Survey. Low light-intensity activity (100&ndash;799 counts/min), high light-intensity activity (800 counts/min to &lt;4 METs) and moderate- to vigorous-intensity activity (&ge;4 METs, Freedson age-specific equation) were accelerometer-derived. Cardiometabolic biomarkers, including waist circumference, systolic blood pressure, diastolic blood pressure, HDL-cholesterol, and C-reactive protein were measured. Triglycerides, LDL- cholesterol, insulin, glucose, and homeostatic model assessments of &beta;-cell function (HOMA-%B) and insulin sensitivity (HOMA-%S) were also measured in a fasting sub-sample (n=807).ResultsAdjusted for confounders, each additional hour/day of low light-intensity activity was associated with 0.59 (95% CI: 1.18&ndash;0.01) mmHG lower diastolic blood pressure. Each additional hour/day of high light-intensity activity was associated with 1.67 (2.94&ndash;0.39) mmHG lower diastolic blood pressure and 0.04 (0.001&ndash;0.07) mmol/L higher HDL-cholesterol. Each additional hour/day of moderate- to vigorous-intensity activity was associated with 3.54 (5.73&ndash;1.35) mmHG lower systolic blood pressure, 5.49 (1.11&ndash;9.77)% lower waist circumference, 25.87 (6.08&ndash;49.34)% lower insulin, and 16.18 (4.92&ndash;28.53)% higher HOMA-%S.ConclusionsTime spent in low light-intensity physical activity and high light-intensity physical activity had some favorable associations with biomarkers. Consistent with current physical activity recommendations for adolescents, moderate- to vigorous-intensity activity had favorable associations with many cardiometabolic biomarkers. While increasing MVPA should still be a public health priority, further studies are needed to identify dose-response relationships for light-intensity activity thresholds to inform future recommendations and interventions for adolescents.</div

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    Coherent states for polynomial su(1,1) algebra and a conditionally solvable system

    Full text link
    In a previous paper [{\it J. Phys. A: Math. Theor.} {\bf 40} (2007) 11105], we constructed a class of coherent states for a polynomially deformed su(2)su(2) algebra. In this paper, we first prepare the discrete representations of the nonlinearly deformed su(1,1)su(1,1) algebra. Then we extend the previous procedure to construct a discrete class of coherent states for a polynomial su(1,1) algebra which contains the Barut-Girardello set and the Perelomov set of the SU(1,1) coherent states as special cases. We also construct coherent states for the cubic algebra related to the conditionally solvable radial oscillator problem.Comment: 2 figure
    corecore