research

Coherent states for polynomial su(1,1) algebra and a conditionally solvable system

Abstract

In a previous paper [{\it J. Phys. A: Math. Theor.} {\bf 40} (2007) 11105], we constructed a class of coherent states for a polynomially deformed su(2)su(2) algebra. In this paper, we first prepare the discrete representations of the nonlinearly deformed su(1,1)su(1,1) algebra. Then we extend the previous procedure to construct a discrete class of coherent states for a polynomial su(1,1) algebra which contains the Barut-Girardello set and the Perelomov set of the SU(1,1) coherent states as special cases. We also construct coherent states for the cubic algebra related to the conditionally solvable radial oscillator problem.Comment: 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020