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Abstract

A method for the catalytic asymmetric γ sulfenylation of carbonyl compounds has been developed.
In the presence of an appropriate catalyst, thiols not only add to the γ position of allenoates,
overcoming their propensity to add to the β position in the absence of a catalyst, but do so with very
good enantioselectivity. Sulfur nucleophiles are now added to the three families of nucleophiles
(carbon, nitrogen, and oxygen) that had earlier been shown to participate in catalyzed γ additions.
The phosphine catalyst of choice, TangPhos, had previously only been employed as a chiral ligand
for transition metals, not as an efficient enantioselective nucleophilic catalyst.

Chiral sulfur-containing compounds have important applications in many areas of chemistry
and biology, serving, for example, as antibiotics, as ligands for metal-based catalysts, as
catalysts themselves, and as chiral auxiliaries.1 With respect to the catalytic enantioselective
synthesis of sulfur-containing molecules, the conjugate addition of thiols to the β position of
α,β-unsaturated carbonyl compounds has been the focus of intense interest.2 Furthermore, there
has been recent progress in catalytic asymmetric sulfenylation α to a carbonyl group.3 In
contrast, we are not aware of any methods for catalytic enantioselective sulfenylation of the
γ position of carbonyl compounds.4

Trost and others have established that phosphines can catalyze certain γ additions of carbon,
nitrogen, and oxygen nucleophiles to 2,3-allenoates and/or 2-alkynoates;5–8 on the other hand,
the corresponding γ additions of sulfur nucleophiles have not been achieved. In this report, we
describe a method that not only accomplishes γ functionalizations with this new family of
nucleophiles, but also provides highly enantioenriched products (eq 1).9–12
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(1)

In the case of the carbon, nitrogen, and oxygen nucleophiles that have previously been
employed in phosphine-catalyzed γ additions, there is generally no reaction between the
nucleophile and an allenoate at room temperature in the absence of a catalyst. In contrast, thiols
do react with allenoates, although not to afford the γ-addition product (Table 1, entry 1); instead,
the uncatalyzed process leads to addition of the thiol to the β position.

Nevertheless, through the use of an appropriate catalyst, the regioselectivity of the addition
process can be altered such that the desired γ-addition product is generated not only in good
yield, but also with very good enantioselectivity. In particular, chiral bisphosphine TangPhos
(1), originally developed by Zhang as a ligand for rhodium-catalyzed asymmetric
hydrogenations of olefins,13 along with a carboxylic acid additive,14 serves as a useful catalyst
system, furnishing the γ-sulfenylated product in 89% yield and 92% ee (Table 1, entry 2). To
the best of our knowledge, this is the first application of TangPhos as an effective chiral
nucleophilic catalyst.15,16

In the absence of carboxylic acid 2, or if 2 is replaced by phenol,5d very little of the γ-addition
product is observed (Table 1, entries 3 and 4). Other chiral phosphines (e.g., see entries 55d

and 67d) furnish lower yield and/or ee. The use of 1.1 equivalents of thiol leads to a small loss
in yield and no change in enantioselectivity (entry 7).

This phosphine-catalyzed asymmetric γ addition of thiols proceeds in good yield for an array
of allenoates (Table 2).17 Thus, carbon–sulfur bond formation occurs with high ee in the
presence of a variety of functional groups, including alkenes, alkynes, ethers, acetals, esters,
and halides.

This method for the catalytic asymmetric synthesis of sulfides is versatile not only with regard
to the allenoate, but also the thiol (Table 3). A variety of substituted benzyl thiols, including
hindered substrates, add to the γ position in good yield and ee (entries 1–5). Furthermore,
heterocycles are compatible with the reaction conditions (entries 6 and 7). TangPhos also
efficiently catalyzes the asymmetric γ addition of thiols that are not benzylic (entries 8–11);
for the substrate illustrated in entry 11, exclusive γ addition by sulfur (none by oxygen7) is
observed.

The enantioenriched sulfides that are produced via phosphine-catalyzed γ additions to
allenoates can be transformed into other useful compounds. For example, the sulfide can be
converted into a thiol (eq 2), or highly stereoselective functionalizations of the olefin can be
achieved (eq 3).
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(2)

(3)

In summary, the first method for the catalytic asymmetric γ sulfenylation of carbonyl
compounds has been developed. Thus, in the presence of an appropriate catalyst, thiols not
only add to the γ position of allenoates, overcoming their propensity to add to the β position
in the absence of a catalyst, but do so with very good enantioselectivity. Sulfur nucleophiles
are now added to the three families of nucleophiles (carbon, nitrogen, and oxygen) that had
earlier been shown to participate in catalyzed γ additions. The phosphine catalyst of choice,
TangPhos, had previously only been employed as a chiral ligand for transition metals, not as
an efficient enantioselective nucleophilic catalyst. The development of additional phosphine-
catalyzed asymmetric reactions is underway.
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Table 1

Effect of Reaction Parameters on the Catalytic Asymmetric γ Addition of Thiols to Allenoates.

entry
change from the “standard
conditions” yield (%)a ee (%)

1 no (+)-1 and no 2 0b –

2 none 89 92

3 no 2 <5 –

4 PhOH instead of 2 <5 –

5 (S)-3 instead of (+)-1 <5 –

6 (S)-4 instead of (+)-1 81 80

7 1.1, instead of 3, equiv of thiol 80 92

All data are the average of two experiments.

a
The yield of the γ-addition product was determined by 1H NMR analysis with dibromomethane as an internal standard.

b
Addition occurs predominantly at the β position.
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Table 2

Catalytic Asymmetric γ Addition of Thiols to Allenoates: Scope with Respect to the Allenoate.

entry R yield (%)a ee (%)

1 n-Pr 80 91

2 78 92

3 81 91

4 87 85

5 (CH2)4OBn 81 93
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entry R yield (%)a ee (%)

6 89 90

7 (CH2)2CO2Me 72 92

8 (CH2)3Cl 82 93

All data are the average of two experiments.

a
Yield of purified product.
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Table 3

Catalytic Asymmetric γ Addition of Thiols to Allenoates: Scope with Respect to the Thiol.

entry HS–R yield (%)a ee (%)

1 HS–Bn 77 92

2 77 90

3 76 92

4 77 94

5 83 95
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entry HS–R yield (%)a ee (%)

6 72 92

7 67 89

8 78 87
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entry HS–R yield (%)a ee (%)

9 80 93

10 73 85

11 79 88

All data are the average of two experiments.

a
Yield of purified product.
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