669 research outputs found

    Carbon nanotube: a low-loss spin-current waveguide

    Full text link
    We demonstrate with a quantum-mechanical approach that carbon nanotubes are excellent spin-current waveguides and are able to carry information stored in a precessing magnetic moment for long distances with very little dispersion and with tunable degrees of attenuation. Pulsed magnetic excitations are predicted to travel with the nanotube Fermi velocity and are able to induce similar excitations in remote locations. Such an efficient way of transporting magnetic information suggests that nanotubes are promising candidates for memory devices with fast magnetization switchings

    The most relevant diagnostic criteria for developmental dysplasia of the hip: a study of British specialists.

    Get PDF
    BACKGROUND: Developmental dysplasia of the hip (DDH) is the most common orthopaedic disorder in newborns. Despite this considerable variation in practice exists. The aim of this study was to determine the clinical relevance and a ranking order for the diagnostic criteria in DDH amongst paediatric orthopaedic surgeons practicing in the UK. METHOD: One hundred members of the British Society of Children's Orthopaedic Surgery (BSCOS) were asked to rate the importance of 37 criteria useful in the diagnosis of DDH in newborns, using a 10 cm visual analogue scale. We determined the consistency among specialists in rating the criteria with the intraclass correlation coefficient (ICC) and compared the results to a group of international peers. RESULTS: Ortolani/Barlow tests, asymmetry in abduction ≥20° and a first-degree relative treated for DDH ranked among the top ten. Participants demonstrated poor consistency in rating the 37 criteria (ICC 0.39; 95% CI 0.29, 0.52), but for clinical examination criteria alone their consistency improved (ICC 0.52; 0.35, 0.75). The importance ratings of members of BSCOS and members of the European Paediatric Orthopaedic Society differed for 15/37 (41%) criteria (p <0.05). CONCLUSIONS: Members of BSCOS had a preference for criteria relating to clinical examination and ultrasound

    fulgeo-Design of an Intuitive User Interface for a Multimedia Search Engine

    Get PDF
    Multimedia documents like PowerPoint presentations or Flash documents are widely adopted in the Internet and exist in context of lots of different topics. However, so far there is no user friendly way to explore and search for this content. The aim of this work is to address this issue by developing a new, easy-to-use user interface approach and prototype search engine. Our system is called fulgeo and specifically focuses on a suitable multimedia interface for visualizing the query results of Flash documents. The prototype is available online as live demo at: http://fulgeo.komsys.org

    Spectroscopic techniques and the conservation of artists’ acrylic emulsion paints

    Get PDF
    Artists’ acrylic emulsion paints are used in many contexts such as paintings, murals, sculptures, works on paper and mixed media; and are forming increasing proportions of modern and contemporary art collections. Although acrylic emulsion paints have been the focus of museum-led research over the past decade, the impact of artists’ technique and conservation treatment on the upper-most surface of these paints remains essentially unexplored ; This paper summarises previous studies using vibrational (FTIR) spectroscopy and presents initial assessments of paint surfaces using X-ray spectroscopies (XPS and NEXAFS) aimed at characterising artists’ acrylic paint film surfaces after natural ageing and wet surface cleaning treatment. Both techniques were found to be well suited for surface-sensitive investigations of the organic materials associated with artists’ acrylic paints, including explorations into: (A) cleaning system residues, (B) surfactant extraction from paint surfaces, (C) the identification of migrated surfactant, and (D) monitoring pigment changes at the paint/air interface of paint films ; It has been shown is that these X-ray spectroscopic techniques can be used for the analysis of almost purely organic materials in a way that complements mass spectroscopic techniques, FTIR and XRF. This investigation forms part of broader, currently ongoing, multi-technique investigation into the properties of artists’ acrylic paints and development of conservation treatments for works-of-art made with these materials

    Automated analysis of XANES: A feasibility study of Au reference compounds

    Get PDF
    With the advent of high-throughput and imaging core level spectroscopies (including X-ray absorption spectroscopy, XAS, as well as electron energy loss spectroscopy, EELS), automated data processing, visualisation and analytics will become a necessity. As a first step towards these objectives we examined the possibilities and limitations of a simple automated XANES peak fitting procedure written in MATLAB, for the parametrisation of XANES features, including ionisation potentials as well as the energies and intensities of electronic transitions. Using a series of Au L3-edge XANES reference spectra we show that most of the relevant information can be captured through a small number of rules applied to constrain the fits. Uncertainty in this strategy arises mostly when the ionisation potential (IP) overlaps with weak electronic transitions or features in the continuum beyond the IP, which can result in ambiguity through multiple equally good fits

    Profiling a decade of information systems frontiers’ research

    Get PDF
    This article analyses the first ten years of research published in the Information Systems Frontiers (ISF) from 1999 to 2008. The analysis of the published material includes examining variables such as most productive authors, citation analysis, universities associated with the most publications, geographic diversity, authors’ backgrounds and research methods. The keyword analysis suggests that ISF research has evolved from establishing concepts and domain of information systems (IS), technology and management to contemporary issues such as outsourcing, web services and security. The analysis presented in this paper has identified intellectually significant studies that have contributed to the development and accumulation of intellectual wealth of ISF. The analysis has also identified authors published in other journals whose work largely shaped and guided the researchers published in ISF. This research has implications for researchers, journal editors, and research institutions

    Left ventricular speckle tracking-derived cardiac strain and cardiac twist mechanics in athletes: a systematic review and meta-analysis of controlled studies

    Get PDF
    Background: The athlete’s heart is associated with physiological remodeling as a consequence of repetitive cardiac loading. The effect of exercise training on left ventricular (LV) cardiac strain and twist mechanics are equivocal, and no meta-analysis has been conducted to date. Objective: The objective of this systematic review and meta-analysis was to review the literature pertaining to the effect of different forms of athletic training on cardiac strain and twist mechanics and determine the influence of traditional and contemporary sporting classifications on cardiac strain and twist mechanics. Methods: We searched PubMed/MEDLINE, Web of Science, and ScienceDirect for controlled studies of aged-matched male participants aged 18–45 years that used two-dimensional (2D) speckle tracking with a defined athlete sporting discipline and a control group not engaged in training programs. Data were extracted independently by two reviewers. Random-effects meta-analyses, subgroup analyses, and meta-regressions were conducted. Results: Our review included 13 studies with 945 participants (controls n = 355; athletes n = 590). Meta-analyses showed no athlete–control differences in LV strain or twist mechanics. However, moderator analyses showed greater LV twist in high-static low-dynamic athletes (d = –0.76, 95% confidence interval [CI] –1.32 to –0.20; p < 0.01) than in controls. Peak untwisting velocity (PUV) was greater in high-static low-dynamic athletes (d = –0.43, 95% CI –0.84 to –0.03; p < 0.05) but less than controls in high-static high-dynamic athletes (d = 0.79, 95% CI 0.002–1.58; p = 0.05). Elite endurance athletes had significantly less twist and apical rotation than controls (d = 0.68, 95% CI 0.19–1.16, p < 0.01; d = 0.64, 95% CI 0.27–1.00, p = 0.001, respectively) but no differences in basal rotation. Meta-regressions showed LV mass index was positively associated with global longitudinal (b = 0.01, 95% CI 0.002–0.02; p < 0.05), whereas systolic blood pressure was negatively associated with PUV (b = –0.06, 95% CI –0.13 to –0.001; p = 0.05). Conclusion: Echocardiographic 2D speckle tracking can identify subtle physiological differences in adaptations to cardiac strain and twist mechanics between athletes and healthy controls. Differences in speckle tracking echocardiography-derived parameters can be identified using suitable sporting categorizations

    Fulgeo - towards an intuitive user interface for a semantics-enabled multimedia search engine

    Get PDF
    Multimedia documents like PowerPoint presentations or Flash documents are widely adopted in the Internet and exist in context of lots of different topics. However, so far there is no user friendly way to explore and search for this content. The aim of this work is to address this issue by developing a new, easy-to-use user interface approach and prototype search engine. Our system is called fulgeo and specifically focuses on a suitable multimedia interface for visualizing the query results of semantically-enriched Flash documents

    Phthalocyanine-nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Accounts of Chemical Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/ar5004384Conspectus Phthalocyanines (Pcs) are macrocyclic and aromatic compounds that present unique electronic features such as high molar absorption coefficients, rich redox chemistry, and photoinduced energy/electron transfer abilities that can be modulated as a function of the electronic character of their counterparts in donor-acceptor (D-A) ensembles. In this context, carbon nanostructures such as fullerenes, carbon nanotubes (CNTs), and, more recently, graphene are among the most suitable Pc companions. Pc-C60 ensembles have been for a long time the main actors in this field, due to the commercial availability of C60 and the ell-established synthetic methods for its functionalization. As a result, many Pc-C60 architectures have been prepared, featuring different connectivities (covalent or supramolecular), intermolecular interactions (self-organized or molecularly dispersed species), and Pc HOMO/LUMO levels. All these elements provide a versatile toolbox for tuning the photophysical properties in terms of the type of process (photoinduced energy/electron transfer), the nature of the interactions beteen the electroactive units (through bond or space), and the kinetics of the formation/decay of the photogenerated species. Some recent trends in this field include the preparation of stimuli-responsive multicomponent systems ith tunable photophysical properties and highly ordered nanoarchitectures and surface-supported systems shoing high charge mobilities. A breakthrough in the Pc-nanocarbon field as the appearance of CNTs and graphene, hich opened a ne avenue for the preparation of intriguing photoresponsive hybrid ensembles shoing light-stimulated charge separation. The scarce solubility of these 1-D and 2-D nanocarbons, together ith their loer reactivity ith respect to C60 stemming from their less strained sp2 carbon netorks, has not meant an unsurmountable limitation for the preparation of variety of Pc-based hybrids. These systems, hich sho improved solubility and dispersibility features, bring together the unique electronic transport properties of CNTs and graphene ith the excellent light-harvesting and tunable redox properties of Pcs. A singular and distinctive feature of these Pc-CNT/graphene (single- or fe-layers) hybrid materials is the control of the direction of the photoinduced charge transfer as a result of the band-like electronic structure of these carbon nanoforms and the adjustable electronic levels of Pcs. Moreover, these conjugates present intensified light-harvesting capabilities resulting from the grafting of several chromophores on the same nanocarbon platform.In this Account, recent progress in the construction of covalent and supramolecular Pc-nanocarbon ensembles is summarized, ith a particular emphasis on their photoinduced behavior. e believe that the high degree of control achieved in the preparation of Pc-carbon nanostructures, together ith the increasing knoledge of the factors governing their photophysics, ill allo for the design of next-generation light-fueled electroactive systems. Possible implementation of these Pc-nanocarbons in high performance devices is envisioned, finally turning into reality much of the expectations generated by these materialsFinancial support from the Spanish MICINN (CTQ2011-24187/BQU), the Comunidad de Madrid (S2013/MIT-2841 FOTOCARBON) and the EU (“SO2S” FP7-PEOPLE-2012-ITN, no.: 316975) is acknowledge

    Defining the Conformational Features of Anchorless, Poorly Neuroinvasive Prions

    Get PDF
    Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion
    corecore