54 research outputs found

    Loss of sea ice during winter north of Svalbard

    Get PDF
    Sea ice loss in the Arctic Ocean has up to now been strongest during summer. In contrast, the sea ice concentration north of Svalbard has experienced a larger decline during winter since 1979. The trend in winter ice area loss is close to 10% per decade, and concurrent with a 0.3°C per decade warming of the Atlantic Water entering the Arctic Ocean in this region. Simultaneously, there has been a 2°C per decade warming of winter mean surface air temperature north of Svalbard, which is 20–45% higher than observations on the west coast. Generally, the ice edge north of Svalbard has retreated towards the northeast, along the Atlantic Water pathway. By making reasonable assumptions about the Atlantic Water volume and associated heat transport, we show that the extra oceanic heat brought into the region is likely to have caused the sea ice loss. The reduced sea ice cover leads to more oceanic heat transferred to the atmosphere, suggesting that part of the atmospheric warming is driven by larger open water area. In contrast to significant trends in sea ice concentration, Atlantic Water temperature and air temperature, there is no significant temporal trend in the local winds. Thus, winds have not caused the long-term warming or sea ice loss. However, the dominant winds transport sea ice from the Arctic Ocean into the region north of Svalbard, and the local wind has influence on the year-to-year variability of the ice concentration, which correlates with surface air temperatures, ocean temperatures, as well as the local wind

    Married women’s decision making power on family planning use and associated factors in Mizan-Aman, South Ethiopia: a cross sectional study

    Get PDF
    BACKGROUND: Women’s use of family planning service is influenced by many factors, especially by their decision making power. A woman’s decision-making power, be it individual or decision made in collaboration with a partner, is the most important factor in the use of family planning in a household. The purpose of this study was to assess the impact of women’s decision making power on family planning use and its associated factors. METHODS: A community-based cross-sectional study was conducted on married women in the child bearing age. The women who were living in Mizan city were selected using the simple random sampling method. Trained nurses collected the data by interview, using a structured and pre-tested questioner. Bivariable and multivariable binary logistic regression analysis was used to identify the associated factors, and the odds ratio with a 95 % CI was computed to assess the strength of the association. Collinearity was also assessed by looking at standard errors in the final fitted model. RESULT: Overall, more than two-thirds [67.2 %: 95 % CI (63–71 %)] of the married women were found to be more autonomous to decide family planning use. Secondary education [AOR: 9.04, 95 % CI: (4.50, 18.16)], government employment [AOR: 4.84, 95 % CI: (2.03, 11.52)], being wives of government employed spouses [AOR 2.71, 95 % CI: (1.24, 7.97)], having husbands with college or university education [AOR: 11.29, 95 % CI: (4.66, 27.35)], and being in the younger age [AOR: 0.27, 95 % CI :(0.09, 0.75)] were significantly associated with women’s decision-making power on family planning. CONCLUSIONS: In this study, women had a high decision making power in family planning use. Age category (34–44-years), formal education, and occupational status had effects on women’s decision making power. Promoting parental adult education and engaging women in out of house employment is essential to improve their decision making power in using family planning

    Human factors and ergonomics design principles and guidelines : helping designers to be more creative

    Get PDF
    This is a pre-copyedited version of a contribution published in: Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018). IEA 2018. Advances in Intelligent Systems and Computing, vol 824, edited by Bagnara S., Tartaglia R., Albolino S., Alexander T., Fujita Y., published by Springer, Cham. The definitive authenticated version is available online via https://doi.org/10.1007/978-3-319-96071-5_17.The knowledge and application of Human Factors/Ergonomics (HFE) principles and guidelines can help designers to develop better products and services. However, they may also include design constraints that may affect designers’ creativity. Although both HFE principles and guidelines and creativity are considered essential in the design of products and services, the link between them is little researched. In this article a discussion is presented on the influence that HFE principles and guidelines can exert on the creativity of designers. It also presents case studies of HFE principles and guidelines and discusses how they can influence designers’ creativity. In addition, a set of recommendations is suggested to help designers apply ergonomic design principles and guidelines to stimulate creativity. It is concluded that HFE principles and guidelines can assist designers in creating safer and more efficient products and services and can also broaden their creative process and therefore the originality and appropriateness of products and services

    Action to protect the independence and integrity of global health research

    Get PDF
    Storeng KT, Abimbola S, Balabanova D, et al. Action to protect the independence and integrity of global health research. BMJ GLOBAL HEALTH. 2019;4(3): e001746

    Using children's drawings to improve a programming app

    No full text

    The COTUR project: remote sensing of offshore turbulence for wind energy application

    Get PDF
    The paper presents the measurement strategy and data set collected during the COTUR (COherence of TURbulence with lidars) campaign. This field experiment took place from February 2019 to April 2020 on the southwestern coast of Norway. The coherence quantifies the spatial correlation of eddies and is little known in the marine atmospheric boundary layer. The study was motivated by the need to better characterize the lateral coherence, which partly governs the dynamic wind load on multi-megawatt offshore wind turbines. During the COTUR campaign, the coherence was studied using land-based remote sensing technology. The instrument setup consisted of three long-range scanning Doppler wind lidars, one Doppler wind lidar profiler and one passive microwave radiometer. Both the WindScanner software and LidarPlanner software were used jointly to simultaneously orient the three scanner heads into the mean wind direction, which was provided by the lidar wind profiler. The radiometer instrument complemented these measurements by providing temperature and humidity profiles in the atmospheric boundary layer. The scanning beams were pointed slightly upwards to record turbulence characteristics both within and above the surface layer, providing further insight on the applicability of surface-layer scaling to model the turbulent wind load on offshore wind turbines. The preliminary results show limited variations of the lateral coherence with the scanning distance. A slight increase in the identified Davenport decay coefficient with the height is partly due to the limited pointing accuracy of the instruments. These results underline the importance of achieving pointing errors under 0.1∘ to study properly the lateral coherence of turbulence at scanning distances of several kilometres.publishedVersio

    Using Remotely Supervised At-Home TES for Enhancing Mental Resilience

    No full text
    We are in the midst of a mental health crisis with major depressive disorder being the most prevalent among mental health disorders and up to 30% of patients not responding to first-line treatments. Noninvasive Brain Stimulation (NIBS) techniques have proven to be effective in treating depression. However, there is a fundamental problem of scale. Currently, any type of NIBS treatment requires patients to repeatedly visit a clinic to receive brain stimulation by trained personnel. This is an often-insurmountable barrier to both patients and healthcare providers in terms of time and cost. In this perspective, we assess to what extent Transcranial Electrical Stimulation (TES) might be administered with remote supervision in order to address this scaling problem and enable neuroenhancement of mental resilience at home. Social, ethical, and technical challenges relating to hardware- and software-based solutions are discussed alongside the risks of stimulation under- or over-use. Solutions to provide users with a safe and transparent ongoing assessment of aptitude, tolerability, compliance, and/or misuse are proposed, including standardized training, eligibility screening, as well as compliance and side effects monitoring. Looking into the future, such neuroenhancement could be linked to prevention systems which combine home-use TES with digital sensor and mental monitoring technology to index decline in mental wellbeing and avoid relapse. Despite the described social, ethical legal, and technical challenges, the combination of remotely supervised, at-home TES setups with dedicated artificial intelligence systems could be a powerful weapon to combat the mental health crisis by bringing personalized medicine into people’s homes
    • …
    corecore