1,390 research outputs found
Relatively hyperbolic groups, rapid decay algebras, and a generalization of the Bass conjecture
By deploying dense subalgebras of we generalize the Bass
conjecture in terms of Connes' cyclic homology theory. In particular, we
propose a stronger version of the -Bass Conjecture. We prove that
hyperbolic groups relative to finitely many subgroups, each of which posses the
polynomial conjugacy-bound property and nilpotent periodicity property, satisfy
the -Stronger-Bass Conjecture. Moreover, we determine the
conjugacy-bound for relatively hyperbolic groups and compute the cyclic
cohomology of the -algebra of any discrete group.Comment: 32 pages, 2 figures; added an appendix also by C. Ogl
Ultraluminous Star-forming Galaxies and Extremely Luminous Warm Molecular Hydrogen Emission at z = 2.16 in the PKS 1138–26 Radio Galaxy Protocluster
A deep Spitzer Infrared Spectrograph map of the PKS 1138–26 galaxy protocluster reveals ultraluminous polycyclic aromatic hydrocarbon (PAH) emission from obscured star formation in three protocluster galaxies, including Hα-emitter (HAE) 229, HAE 131, and the central Spiderweb Galaxy. Star formation rates of ~500-1100 M_☉ yr^(–1) are estimated from the 7.7 μm PAH feature. At such prodigious formation rates, the galaxy stellar masses will double in 0.6-1.1 Gyr. We are viewing the peak epoch of star formation for these protocluster galaxies. However, it appears that extinction of Hα is much greater (up to a factor of 40) in the two ULIRG HAEs compared to the Spiderweb. This may be attributed to different spatial distributions of star formation-nuclear star formation in the HAEs versus extended star formation in accreting satellite galaxies in the Spiderweb. We find extremely luminous mid-IR rotational line emission from warm molecular hydrogen in the Spiderweb Galaxy, with L(H_2 0-0 S(3)) = 1.4 × 10^(44) erg s^(–1) (3.7 × 10^(10) L_☉), ~20 times more luminous than any previously known H2 emission galaxy (MOHEG). Depending on the temperature, this corresponds to a very large mass of >9 × 10^(6)-2 × 10^9 M_☉ of T > 300 K molecular gas, which may be heated by the PKS 1138–26 radio jet, acting to quench nuclear star formation. There is >8 times more warm H_2 at these temperatures in the Spiderweb than what has been seen in low-redshift (z < 0.2) radio galaxies, indicating that the Spiderweb may have a larger reservoir of molecular gas than more evolved radio galaxies. This is the highest redshift galaxy yet in which warm molecular hydrogen has been directly detected
High-ionization mid-infrared lines as black hole mass and bolometric luminosity indicators in active galactic nuclei
We present relations of the black hole mass and the optical luminosity with
the velocity dispersion and the luminosity of the [Ne V] and the [O IV]
high-ionization lines in the mid-infrared (MIR) for 28 reverberation-mapped
active galactic nuclei. We used high-resolution Spitzer Infrared Spectrograph
and Infrared Space Observatory Short Wavelength Spectrometer data to fit the
profiles of these MIR emission lines that originate from the narrow-line region
of the nucleus. We find that the lines are often resolved and that the velocity
dispersion of [Ne V] and [O IV] follows a relation similar to that between the
black hole mass and the bulge stellar velocity dispersion found for local
galaxies. The luminosity of the [Ne V] and the [O IV] lines in these sources is
correlated with that of the optical 5100A continuum and with the black hole
mass. Our results provide a means to derive black hole properties in various
types of active galactic nuclei, including highly obscured systems.Comment: accepted for publication in ApJ
Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report
A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test
A novel SHAPE reagent enables the analysis of RNA structure in living cells with unprecedented accuracy
Due to the mounting evidence that RNA structure plays a critical role in regulating almost any physiological as well as pathological process, being able to accurately define the folding of RNA molecules within living cells has become a crucial need. We introduce here 2-aminopyridine-3-carboxylic acid imidazolide (2A3), as a general probe for the interrogation of RNA structures in vivo. 2A3 shows moderate improvements with respect to the state-of-the-art selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) reagent NAI on naked RNA under in vitro conditions, but it significantly outperforms NAI when probing RNA structure in vivo, particularly in bacteria, underlining its increased ability to permeate biological membranes. When used as a restraint to drive RNA structure prediction, data derived by SHAPE-MaP with 2A3 yields more accurate predictions than NAI-derived data. Due to its extreme efficiency and accuracy, we can anticipate that 2A3 will rapidly take over conventional SHAPE reagents for probing RNA structures both in vitro and in vivo
Note and Comment
The Execution of the Insured for Crime as a Defense to the Insurer, the Policy Being Silent as to This Contingency; The Power of a Corporation to Hold and Vote Stock of Another Corporation; Effect of an Agreement Not to Compromise Without consent of Attorney Upon Contract for Contingent Fees; The Pennsylvania Supreme Court and The Pennsylvania Railroad Compan
Detection of Powerful Mid-IR H_2 Emission in the Bridge between the Taffy Galaxies
We report the detection of strong, resolved emission from warm H_2 in the Taffy galaxies and bridge. Relative to the continuum and faint polyclic aromatic hydrocarbon (PAH) emission, the H_2 emission is the strongest in the connecting bridge, approaching L(H_2)/L(PAH 8 μm) = 0.1 between the two galaxies, where the purely rotational lines of H_2 dominate the mid-infrared spectrum in a way very reminiscent of the group-wide shock in the interacting group Stephan's Quintet (SQ). The surface brightness in the 0-0 S(0) and S(1) H_2 lines in the bridge is more than twice that observed at the center of the SQ shock. We observe a warm H2 mass of 4.2 × 10^8 M_☉ in the bridge, but taking into account the unobserved bridge area, the total warm mass is likely to be twice this value. We use excitation diagrams to characterize the warm molecular gas, finding an average surface mass of ~5 × 10^6 M_☉ kpc^(–2) and typical excitation temperatures of 150-175 K. H_2 emission is also seen in the galaxy disks, although there the emission is more consistent with normal star-forming galaxies. We investigate several possible heating mechanisms for the bridge gas but favor the conversion of kinetic energy from the head-on collision via turbulence and shocks as the main heating source. Since the cooling time for the warm H_2 is short (~5000 yr), shocks must be permeating the molecular gas in the bridge region in order to continue heating the H_2
A Spitzer Unbiased Ultradeep Spectroscopic Survey
We carried out an unbiased, spectroscopic survey using the low-resolution
module of the infrared spectrograph (IRS) on board Spitzer targeting two 2.6
square arcminute regions in the GOODS-North field. IRS was used in spectral
mapping mode with 5 hours of effective integration time per pixel. One region
was covered between 14 and 21 microns and the other between 20 and 35 microns.
We extracted spectra for 45 sources. About 84% of the sources have reported
detections by GOODS at 24 microns, with a median F_nu(24um) ~ 100 uJy. All but
one source are detected in all four IRAC bands, 3.6 to 8 microns. We use a new
cross-correlation technique to measure redshifts and estimate IRS spectral
types; this was successful for ~60% of the spectra. Fourteen sources show
significant PAH emission, four mostly SiO absorption, eight present mixed
spectral signatures (low PAH and/or SiO) and two show a single line in
emission. For the remaining 17, no spectral features were detected. Redshifts
range from z ~ 0.2 to z ~ 2.2, with a median of 1. IR Luminosities are roughly
estimated from 24 microns flux densities, and have median values of 2.2 x
10^{11} L_{\odot} and 7.5 x 10^{11} L_{\odot} at z ~ 1 and z ~ 2 respectively.
This sample has fewer AGN than previous faint samples observed with IRS, which
we attribute to the fainter luminosities reached here.Comment: Published in Ap
Strong molecular hydrogen emission and kinematics of the multiphase gas in radio galaxies with fast jet-driven outflows
Observations of ionized and neutral gas outflows in radio-galaxies (RGs)
suggest that AGN radio jet feedback has a galaxy-scale impact on the host ISM,
but it is still unclear how the molecular gas is affected. We present deep
Spitzer IRS spectroscopy of 8 RGs that show fast HI outflows. All of these
HI-outflow RGs have bright H2 mid-IR lines that cannot be accounted for by UV
or X-ray heating. This suggests that the radio jet, which drives the HI
outflow, is also responsible for the shock-excitation of the warm H2 gas. In
addition, the warm H2 gas does not share the kinematics of the ionized/neutral
gas. The mid-IR ionized gas lines are systematically broader than the H2 lines,
which are resolved by the IRS (with FWHM up to 900km/s) in 60% of the detected
H2 lines. In 5 sources, the NeII line, and to a lesser extent the NeIII and NeV
lines, exhibit blue-shifted wings (up to -900km/s with respect to the systemic
velocity) that match the kinematics of the outflowing HI or ionized gas. The H2
lines do not show broad wings, except tentative detections in 3 sources. This
shows that, contrary to the HI gas, the H2 gas is inefficiently coupled to the
AGN jet-driven outflow of ionized gas. While the dissipation of a small
fraction (<10%) of the jet kinetic power can explain the dynamical heating of
the molecular gas, our data show that the bulk of the warm molecular gas is not
expelled from these galaxies.Comment: 26 pages, 15 figures, Accepted for ublication in Ap
- …