NASA Technical Memorandum 4204

Space Station Freedom Environmental Control and Life Support System Phase III Simplified Integrated Test Detailed Report

B. C. Roberts, R. L. Carrasquillo,
M. Y. DuBiel, K. Y. Ogle,
J. L. Perry, and K. M. Whitley
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

National Aeronautics and Space Administration

Office of Management

Scientific and Technical Information Division

ACKNOWLEDGMENTS

Many have contributed to the evaluation and documentation of the phase III simplified integrated test results. Special recognition is given to Ms. Marla Fuqua/Sverdrup for her systems engineering role in the preparation of this report.

TABLE OF CONTENTS

1

Page

1.	INTRODUCTION	1
2.	SYSTEM DESIGN/PERFORMANCE	5
3.	SUBSYSTEM DESIGN/PERFORMANCE	7
	 3.1 Four-Bed Molecular Sieve	7 7 15 20 20 20 20 20 20 20 20 20 20 20 20 20
4.	AIR AND WATER SAMPLING RESULTS	53
	 4.1 Introduction	53 53 59 59 79 81 82
5.	CONCLUSIONS/LESSONS LEARNED	82
6.	REFERENCES	84

LIST OF ILLUSTRATIONS

· · · · · · · · ·

Figure	Title	Page
1.	Core Module Integration Facility	2
2.	ECLSS development test program	3
3.	ECLSS phase III test schedule	4
4.	Phase III simplified integration test (SIT) elements	6
5.	Interior of module simulator	8
6.	Module simulator diagram	9
7.	Phase III SIT schematic	10
8.	Four-bed molecular sieve	11
9.	4BMS schematic	13
10.	4BMS operating modes	14
11.	4BMS sorbent bed 2 or 4 pressure (MP08) during day 5	16
12.	4BMS percent O ₂ in CO ₂ product (XG01) during day 5	17
13.	4BMS inlet air partial pressure of CO ₂ (XG02) during day 5	18
14.	4BMS outlet air partial pressure of CO ₂ (XG03) during day 5	19
15.	Static feed electrolyzer subsystem	21
16.	SFE subsystem	22
17.	SFE mass balance	27
18.	Bosch subsystem	28
19.	Bosch II subsystem schematic	29
20.	Bosch carbon product	30
21.	Bosch cartridge	32

LIST OF ILLUSTRATIONS (Concluded)

	Figure	Title	Page
	22.	Bosch mass balance	36
F	23.	Bosch H ₂ feed flow (WF99) and H ₂ inlet flow (WF03)	37
	24.	Bosch water production during SIT	38
	25.	Bosch H_2 feed flow (WF99)	41
	26.	Trace contaminant control system	45
	27.	TCCS schematic	46
	28.	Catalytic oxidizer performance at 4.2 CFM air flowrate	48
	29.	Catalytic oxidizer performance at 3.2 CFM air flowrate	51
	30.	Catalytic oxidizer methane conversion performance	51
	31.	Projected test chamber methane and carbon monoxide	52
	32.	Gas sampling devices – bag and cylinder	58

LIST OF TABLES

Table	Title	Page
1.	Bosch bleed analysis	39
2.	Bosch CO ₂ reduction water analyses	43
3.	Trace contaminant control subsystem subassembly characteristics	46
4.	TCCS process measurements	48
5.	Summary of TCCS sample analysis results	49
6.	Subsystem sample points	54
7.	Sampling schedule	55
8.	Laboratory comparison	60
9.	Molecular sieve gas analyses	62
10.	Static feed electrolysis gas analyses	64
11.	Bosch gas analyses	66
12.	Bosch CO ₂ reduction water analyses	68
13.	TCCS analyses	69
14.	Environmental gas samples	72
15.	Temperature and humidity control analyses	73
16.	MP analytical methods/gas samples	75
17.	BE analytical methods/gas samples	76
18.	BE analytical methods/water samples	77

LIST OF ACRONYMS AND ABBREVIATIONS

		•		
A D	$\Delta 1r$	revita	17911/	۱n
	$\Lambda \Pi$	it vita	iizain	711

BE	Boeing environmental
CCA	Coolant control assembly
CMIF	Core Module Integration Facility
CMS	Core Module Simulator
сс	Cubic centimeter
ccm	Cubic centimeter per minute
CFM	Cubic feet per minute
EEF	End-use equipment facility
ECLSS	Environmental control and life support system
°F	Fahrenheit degrees
ft	Feet
FID	Flame ionization detector
FCA	Fluids control assembly
4BMS	Four-bed molecular sieve
GC/MS	Gas chromatography/mass spectrometer
h	Hour
in	Inch
К	Kelvin degrees
kg	Kilogram
MSFC	Marshall Space Flight Center
МСТ	Metabolic control test

MP	Materials and Processes
m	Meters
mm	Millimeters
mmHg	Millimeters of mercury
min	Minute
NASA	National Aeronautics and Space Administration
р	Partial pressure
ppm	Parts per million
Pa	Pascal
PDU	Performance diagnostic units
КОН	Potassium hydroxide
lbm	Pound mass
psi	Pounds per square inch
psia	Pounds per square inch absolute
psid	Pounds per square inch difference
psig	Pounds per square inch gauge
PCA	Pressure control assembly
QC	Quality control
RPD	Relative percent difference
S	Second
SIT	Simplified integrated test
S.S. Freedom	Space Station Freedom
SMAC	Spacecraft maximum allowable concentration

.

slpm	Standard liters per minute
SFE	Static feed electrolyzer
SCATS	Systems and Components Automated Test System
THCS	Temperature and humidity control system
TC	Total carbon
TIC	Total inorganic carbon
TOC	Total organic carbon
TCCS	Trace contaminant control subsystem
WRT	Water recovery test

.

ĩ

TECHNICAL MEMORANDUM

SPACE STATION FREEDOM ENVIRONMENTAL CONTROL AND LIFE SUPPORT SYSTEM PHASE III SIMPLIFIED INTEGRATED TEST DETAILED REPORT

1.0 INTRODUCTION

The Core Module Integration Facility (CMIF), in building 4755 of Marshall Space Flight Center (MSFC), is the National Aeronautics and Space Administration (NASA) and Boeing test area for the development of the Space Station Freedom (S.S. Freedom) environmental control and life support system (ECLSS). The current CMIF layout is shown in Figure 1.

Testing of individual ECLS subsystems has been conducted in the subsystem test area of the CMIF prior to integrated system testing. This bench testing is referred to as phase I ECLSS testing. Integrated system testing is conducted in the Core Module Simulator (CMS). A test control room is located next to the CMS. Also located next to the CMS is a facility for generating waste water for use in water recovery system tests. This facility is referred to as the end-use equipment facility (EEF).

Currently, the CMIF is also the location for Boeing's comparative test program which is assessing alternative ECLS subsystems to their proposed S.S. Freedom baseline design. This test area is shown in Figure 1.

Since 1987, MSFC-phased testing of the ECLSS has been pursued at the CMIF. In 1989 Boeing began their ECLSS development testing (Fig. 2). Phase I consisted of the independent testing of individual subsystems that are being considered for use in the S.S. Freedom. Integrated testing of subsystems was conducted by MSFC in phase II and continues to be conducted in phase III. A summary of the overall ECLSS development test program is given in Reference 1, and the results of phase II testing are given in References 2 and 3.

An overview of MSFC phase III testing is shown in Figure 3. Requirements for phase III testing are given in References 4 and 5. Phase II used a set of available hardware to prove the subsystem integration capability of typical equipment focusing on oxygen recovery. Phase III utilizes predevelopment equipment of the S.S. Freedom baseline subsystems version and is more comprehensive than previous testing because it includes all water recovery subsystems as well as the air revitalization (AR) system. The independent testing of the AR subsystems in the CMS began the phase III activities. The simplified integrated test (SIT) of these subsystems was conducted July 31 to August 11, 1989, and is described in detail in this report.

The phase III SIT was similar to the phase II SIT in that both were tests of integrated AR subsystems. There were three major differences in the phase II SIT and phase III SIT. First, in the phase III SIT, the Bosch carbon dioxide reduction subsystem, which is a baseline subsystem for the Boeing S.S. Freedom ECLSS, replaced the Sabatier carbon dioxide reduction subsystem that was used in the phase II SIT. This was the first time the Bosch design had been successfully

ORIGINAL PAGE IS OF POOR QUALITY

Figure 1. Core Module Integration Facility.

Figure 2. ECLSS development test program.

integrated with other oxygen recovery subsystems in ECLSS testing by NASA. The major test objectives of SIT were to prepare for later fully integrated oxygen with water recovery testing in the metabolic simulation testing to follow, as such to identify integration problems and focus on determining areas where further testing is needed to prove the integration concept is viable.

Secondly, the trace contaminant control system (TCCS) was integrated and monitored differently in phase III than in phase II. Direct integration with the Bosch was implemented to process product gases of the carbon dioxide reduction design.

Finally, the phase III SIT subsystems ran completely integrated for approximately 5 of the 11 days, whereas the phase II SIT ran completely integrated for 2 days.

2.0 SYSTEM DESIGN/PERFORMANCE

The SIT configuration utilized four air revitalization subsystems, baselined by Boeing, located inside the module simulator at MSFC. These four subsystems were the static feed electro-lyzer (SFE) oxygen generation subsystem, the four-bed molecular sieve (4BMS) carbon dioxide removal subsystem, the Bosch, and the TCCS. A facility simulator of the temperature and humidity control system (THCS) was also located inside the module to provide ventilation and sensible and latent heat removal inside the module. Located outside the module and inside a control room were performance diagnostic units (PDU), used to monitor the SFE and Bosch, and the facility-provided Systems and Components Automated Test System (SCATS) computer for data acquisition and management. Other facility items, such as bottled gases for system and subsystem purging and power supply services, were also provided outside the module.

Figure 4 shows a block diagram of subsystems and fluid interchanges with the phase III SIT. Each subsystem is capable of handling the metabolic requirements of a three-man crew. The SFE generated oxygen and hydrogen from facility-provided water, the 4BMS removed carbon dioxide (CO₂) from the module atmosphere, and the Bosch took the CO₂ and reacted it with hydrogen (H₂) to produce water (H₂O) and carbon (C). Any gases not reacted in the Bosch are then vented to the TCCS.

The 4BMS subsystem removes carbon dioxide from the cabin atmosphere via an adsorption process. The air is pulled from the cabin downstream of the condensing heat exchanger in the THCS and is returned just upstream of the condensing heat exchanger. Carbon dioxide adsorbed out of the air by the 4BMS is fed to an accumulator and then flows to the Bosch.

The SFE subsystem electrolyzes water into gaseous hydrogen and oxygen. During this test, deionized water was provided by the facility for the electrolysis process. All oxygen produced by the SFE was vented outside the simulated module. The hydrogen produced was fed to the Bosch subsystem.

The Bosch takes in hydrogen from the SFE and carbon dioxide from the 4BMS and produces water and carbon in a high temperature chemical reaction. Carbon produced by the Bosch is formed in the reactor catalyst beds inside the subsystem and the water vapor is condensed, collected, and stored.

The TCCS is designed to remove contaminants from the module atmosphere. Inlet air is withdrawn downstream of the condensing heat exchanger in the THCS and is returned to the cabin directly via a vent in the top of the subsystem.

The THCS is built from "off-the-shelf" components and is designed to remove latent and sensible heat via a condensing heat exchanger. An axial fan is located upstream from the heat exchanger to circulate air. A variable damper is located upstream of the heat exchanger to control temperature. All components of the THCS are located below the subfloor of the module simulator. The air intake duct of the THCS is located below the subfloor and the cabin supply ducts are located along the ceiling.

A picture of the subsystems inside the module simulator is shown in Figure 5 and the general layout of each subsystem location inside the module is shown in Figure 6.

A detailed schematic of the SIT configuration is shown in Figure 7. All elements inside the bold black line were located inside the module. A total of 160 sensors were used to monitor the SIT. Of these measurements, 48 were part of facility operations, 20 were located in the integration hardware between subsystems, and 92 were internal to the subsystems.

All the ECLSS subsystems used in this test were "pre-prototype" hardware. No effort was made to simulate higher system management functions, such as thermal control. The door to the module simulator was left open throughout the test to allow easy access for any necessary equipment repairs or replacements. No attempt was made during this test to simulate flight-like conditions. This represents the first time S.S. Freedom AR subsystems, baselined for S.S. Freedom, have been operated in an integrated fashion. This test was simply a first attempt to study how these subsystems functioned when integrated together. A complete description of events which occurred during the test are given in a report published by MSFC's Test Laboratory [6].

3.0 SUBSYSTEM DESIGN/PERFORMANCE

3.1 Four-Bed Molecular Sieve

3.1.1 Detailed Description

i.

The 4BMS, shown in Figure 8, was used to remove CO_2 from the module simulator air and concentrate it for processing by the Bosch. Cabin air with CO_2 flows through a sorbent material and the CO_2 is selectively adsorbed. Adsorption is the physical trapping of individual molecules in voids in the sorbent structure and does not result in a chemical or physical change in the sorbent itself (distinct from the process of absorption which involves a chemical reaction or a physical change or both in the sorbent material). In addition to the molecular size, the polarity of the molecules and the vapor pressure are important factors in the adsorption.

For the 4BMS, the CO_2 sorbent material used is a synthetic zeolite which was selected for its superior ability to adsorb CO_2 . The designation for the CO_2 sorbent is Zeolite 5A. Due to the affinity of Zeolite 5A for water vapor, it is necessary to dry the air before passing it through the CO_2 sorbent beds. The desiccants used to do this are silica gel and another type of zeolite,

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 8. Four-bed molecular sieve.

CRIGINAL PAGE IS OF POOR QUALITY designated Zeolite 13X. The sorbents are in the form of pellets approximately one-eighth of an inch long and one-sixteenth of an inch in diameter. During operation, the sorbents alternately adsorb and desorb and water vapor and CO_2 , which requires two beds each of desiccant and CO_2 sorbent to perform CO_2 removal in an essentially continuous manner.

A schematic of the 4BMS and its instrumentation is shown in Figure 9. The flow path of the air through the 4BMS takes it first through a desiccant bed. The first layer is silica gel, which can adsorb water vapor readily at higher relative humidities, but its capacity decreases at relative humidities less than 50 percent. The second layer is Zeolite 13X, which has a higher capacity than silica gel at relative humidities less than 35 percent. By utilizing a two-layer bed arrangement of this configuration essentially all of the water vapor is removed efficiently. The adsorption process results in a temperature rise in the air stream. There is also a temperature rise across the blower. The blower is located downstream of the desiccant bed so that the temperature rise does not cause a drop in the relative humidity of the incoming air. Downstream of the blower, the precooler reduces the temperature of the air stream to temperatures more conducive to CO_2 adsorption (from about 361 to 294 K). The dry, cool air then flows through a CO₂ sorbent bed, cooling the bed (heated during the previous desorb half-cycle) to a temperature where much of the CO_2 is removed from the air stream. The air is next directed through the second desiccant bed to desorb the water that was adsorbed during the previous half-cycle. The outlet air is recycled to the inlet at the beginning of each half cycle in order to improve performance. After 11 minutes the desorbing desiccant bed has heated (due to residual heat in the now adsorbing CO₂ sorbent bed) enough to begin desorbing water vapor so the recycle valve switches to end recycle. The outlet air has the same average moisture content as the inlet air.

While one CO_2 sorbent bed is adsorbing CO_2 , the other is desorbing CO_2 for storage in the accumulator tank prior to delivery to the Bosch. During desorption, the residual air in the canister is pumped back to the duct upstream of the blower. This is done for 2 min. The evacuated bed is then isolated, then the heater in the bed comes on to raise the temperature to about 477 K (400 °F) which, in combination with the pressure which is reduced to about 0.5 psia, releases the CO_2 from the zeolite where it is transported to the CO_2 accumulator. After about 55 min, the desorption is complete and the next half-cycle begins (see Fig. 10 for the operational modes).

The 4BMS consists of modified Skylab (utilized Skylab hardware for canisters and heaters, five-way valves) hardware and commercially available components (blower, vacuum pumps, CO_2 holding tank, controller, two-way valves). The unit is not optimized with regard to weight, volume, or power usage.

The 4BMS was installed in the module simulator so that it could be operated independently (and vent CO_2) or integrated with the Bosch for CO_2 reduction. During operation, air from the THC heat exchanger was ducted directly to the inlet of the 4BMS. This duct contained a flowmeter, a port for injection of CO_2 , and a connection to a CO_2 partial pressure sensor. The CO_2 supply line contained a flowmeter and a metering valve for regulating the CO_2 flow. As the air flowed through the subsystem, temperature measurements were made at various locations (e.g., inlet upstream and downstream of the precooler, downstream of the sorbent beds). The CO_2 partial pressure (p CO_2) was measured again at the air exit. The air exited into the volume of the simulator.

ORIGINAL PAGE IS OF POOR QUALITY

FOUR BED MOLECULAR SIEVE

	INUTE	SØ	7	11	55	56	2 60	5	110		
0	YCLE I	MODE	1A	1B	2	3A	38	4			
E	BED	1	\leftarrow	- ADSOF	NB	<u> </u>	- DESCR	8	$\overline{\mathbf{x}}$		
CAN			T	T							
2											
E	BED	3	←	- DESOF	88 — — — — 88	<u> </u>	- ADSOF	89	\rightarrow		
Γ											
N	BED	2	Δ	EDESOR	₹8>	<u> </u>	- ADSO	R	$ \rightarrow $		
HB	HEA	TER	ON	ON	ON	OFF	OFF	OFF			
5			REO	YCLE	20	^		20			
Ê	BED			- AUSUA							
	HEA	TER	OFF	OFF	OFF	UN RE	CYCLE	UN			
	OMPO	NENT			POSITION	4					
μ	DESCRI	PHUN	ļ			·	<u>, </u>				
		- 0	2	2	2	1	1	1			
	VALVE	Β	1	1	· 1	2	2	2			
			4	4	4	3	3	3			
	VALVE	ĒĒ	6	6	5	6	6	5			
	VALVE	EF	7	8	8	7	8	8			
		2 6 7 H	3	3	J	4	4	4			
	VALV	ĒÏ	4	4	4	3	3	3			
	VALVI	ΕJ	3	3	3	4	4	4			
	202 COM	PRESSOR	ON	ON	ON	ON	ON	ON			
1	со2 т	ANK	-	CHARG	ING TANK	-	CHARGI	NG TANI	c		
					1						
-			b	L	1	1	, k	ELANPY 1	13/07	1 7	
	VAL	VE	_P0	SITION	-	DESC	RIPTION	-			
	A,8		1		DESICC	ANT	BED TO	AIR RE	TURN	1	
	A,8	1		2	INLET	AIR	TO DESI	CCANT E	BED	THEN	BLOWER
	C,D,G,	H,I,J		3	OPEN						
C.D.G.H.I.J 4 CLOSED											
	E 5 OUTLET TO CABIN										
	E 6 RECYCLE DUTLET TO INLET										
	F			7	RESIDI	IAL 4	IR REM	OVAL			
	F		1	, २				ANK			
	•			-				/ •• •			
	Δ	= RE	SIDU	AL AIR	REMOVAL	MODI	Ε				

Figure 10. 4BMS operating modes.

The desorbed CO_2 was pumped to an accumulator from which the CO_2 could be regulated to the Bosch or vented. An O_2 sensor in the CO_2 outlet line was used to measure the percentage of O_2 in the CO_2 (an indication of the amount of air present in the CO_2). An operational safety constraint was imposed to assure 2 percent or less O_2 in the accumulator.

The two-way values, recycle value, and CO_2 outlet flow control value are pneumatic-type and pressurized nitrogen was supplied to actuate them.

3.1.2 4BMS Performance Analysis

During the phase III SIT, the 4BMS operated for 235 h (including 148 h 39 min when it was integrated with the other AR subsystems). Air leakage in the subsystem caused the 4BMS to be periodically deintegrated from the other air revitalization subsystems for troubleshooting and leak repair.

During the SIT, several facility and internal subsystem sensors did not function properly. The loss of these measurements limits the ability to analyze the performance of the 4BMS. However, since later tests are to repeat this condition, the sensors were not replaced in the interest of beginning the following water recovery testing early. The average CO_2 removal efficiency was expected to be between 1.8 and 2.13 kg/day (3.96 and 4.69 lbm/day). While it can be determined that the 4BMS was removing CO_2 (because the inlet partial pressure of CO_2 was higher than the outlet), the actual CO_2 removal efficiency cannot be calculated because of the loss of several important sensors. This is discussed further in Section 3.1.3.

Some of the key measurements made during this test are shown in Figures 11 through 14. These are discussed below.

MP08 – Desorbing Bed 2 or 4 Presssure: the pressure in the desorbing CO_2 sorbent bed usually ranged from 1 to 2 psia. Figure 11 shows pressure spikes as high as 14 psia. These occurred during pumpdown portion of modes 1 and 3. Otherwise the pressure peaked early during modes 2 and 4 when the increasing temperature desorbed most of the CO_2 .

XG01 – Figure 12 shows the steady increase in the O₂ percentage in the CO₂ outlet. The downward spikes indicate times when the O₂ content reached 2 percent. The CO₂ accumulator was then backfilled with pure facility CO₂ as discussed in Section 3.1.2.

XG02 - As seen in Figure 13, the inlet partial pressure (pCO₂) was maintained at 3 mmHg. This is the maximum 90-day operational pCO₂ for S.S. Freedom.

XG03 – The outlet pCO₂ ranged from about 1 to 1.5 mmHg (Fig. 14). This is higher than expected, since previous testing yielded outlet pCO₂ levels as low as 0.4 mmHg. The increased outlet CO₂ concentration was probably caused by leakage in the subsystem. This leakage may have caused the bed 2 or 4 inlet dew point to be higher than expected. The increased moisture in the air was adsorbed on the sorbent material, displacing some CO₂ that otherwise would have been adsorbed. This contributed to the 4BMS's degraded performance.

Figure 11. 4BMS sorbent bed 2 or 4 pressure (MP08) during day 5.

Figure 12. 4BMS percent O₂ in CO₂ product (XG01) during day 5.

-10 Figure 14. 4BMS outlet air partial pressure of CO₂ (XG03) during day 5.

3.1.3 Discussion of Results

The results of this test show that the 4BMS does perform its intended function during integrated operation. However, excessive air leakage at various locations resulted in lowered performance.

The composition of the outlet CO_2 was roughly 84-percent CO_2 , 13-percent N_2 , and 3-percent O_2 , with no detectable quantities of any other compound. The outlet CO_2 concentration is expected to be greater than 97 percent. The increased air content was due to the subsystem leakage.

As mentioned earlier, it was discovered during the test that several facility and internal subsystem sensors were not functioning properly [6]. In order to calculate the subsystem's CO_2 removal rate, reliable measurements of inlet air flow (XF03), CO_2 injection flow rate (FF01), CO_2 outlet flow (XF05), and the CO_2 outlet pressure (XP03), among others, are necessary. Reliable values of these measurements were not available. An evaluation of the 4BMS's performance is not offered for this reason. Due to the uncertainties indicated here these tests will be repeated at a later date.

3.1.4 Recommendations/Lessons Learned

It is recommended that for future phase III testing, a complete leak test be performed on the subsystem prior to integrated operation. 4BMS leakage will be a critical design issue in the flight design, as such provisions should be made to helium leak check all connectors.

3.2 Static Feed Electrolyzer

3.2.1 Detailed Description

The SFE subsystem was used to generate oxygen at a three-man metabolic rate and hydrogen for use by the Bosch. A schematic of the SFE is shown in Figure 15. The SFE consists of five major components: (1) the electrolysis module, (2) the fluids control assembly (FCA), (3) the pressure control assembly (PCA), (4) the coolant control assembly (CCA), and (5) the feed water tank. A photograph of the SFE sitting inside the simulated module is shown in Figure 16.

The electrolysis of deionized facility water to oxygen and hydrogen takes place in the electrolysis module which consists of 12 cells stacked together between 2 insulation plates and 2 end plates. Each cell contains a water compartment, an oxygen compartment, and a hydrogen compartment. The water and hydrogen compartments are separated by a water feed membrane, while the two gas compartments are separated by the electrolyte matrix/electrode assembly. The electrolyte is aqueous potassium hydroxide (KOH).

The reactions which occur in the cells are:

Figure 15. Static feed electrolyzer subsystem.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY Cathode: $2e + 2(H_2O) \rightarrow H_2 + 2(OH -)$

Anode: $2(OH-) \rightarrow H_2O + 1/2(O_2) + 2e-$

The resulting overall reaction is:

Electrical Energy + $H_2O \rightarrow H_2 + 1/2(O_2) + Heat$.

Before power is applied to the module, the water feed cavity and the electrolyte matrix contain equal concentrations of KOH electrolyte. As power is applied to the electrodes, water is electrolyzed from the electrolyte matrix resulting in a KOH concentration increase and a water vapor pressure decrease in the matrix. As the water pressure in the electrolyte matrix drops below that in the water feed cavity, water diffuses from the water feed cavity through the hydrogen cavity into the electrolyte matrix in an attempt to reestablish the initial equilibrium. As water diffuses from the water feed cavity, it is statically replenished from the feed water tank. The processes of electrolysis, diffusion, and the static replenishment of feed water occur continually as long as power is applied to the cell electrodes. The electrolysis module is equipped with the voltage, current, and temperature sensors required to monitor its performance.

The FCA consists of seven valves which are mounted on two motor-driven cams. The cams are driven to the required positions to open and close the valves to control the purge gas and feed water flows and water tank fills. During normal mode operations, valves V2 and V7 (Fig. 16) are open. V2 permits the flow of water from the feed water tank, WT1, while V7 allows the air side of the tank to be pressurized with product oxygen. The water tank is refilled every three hours. During the tank fill sequence, V2 and V7 are closed. V6 opens briefly to vent the air side of the tank to ambient pressure, and V1 opens to refill the tank from an external water supply. When V6 and V1 close, V3 opens and facility nitrogen flows in to repressurize the tank. Upon completion of the fill sequence, V3 closes and V2 and V7 reopen. The time required for a tank fill is approximately 4 to 5 min. During this fill time, the SFE continues to generate oxygen and hydrogen at the required rates. A nitrogen purge is included in the startup and shutdown sequences. During the purge, V4 and V5 open to allow nitrogen flow through the subsystem oxygen and hydrogen passages. The FCA is instrumented with valve position indicators and pressure sensors necessary for monitoring its operation.

The PCA consist of two motor-driven regulators, an absolute pressure sensor, and a differential pressure sensor. Regulator PR1 controls the hydrogen production pressure, while PR2 controls the oxygen to hydrogen differential pressure. PR1 and PR2 also control the pressurization and depressurization of the SFE during startups and shutdowns. The PCA is equipped with feedback valve position indicators which, with the pressure and differential pressure sensors, provide for monitoring of its operation.

The CCA consists of a motor, a pump, an accumulator, and a motor-operated diverter valve. The diverter valve controls the ratio of flow through the heat exchanger HX1 to flow

through the bypass in order to control the temperature of the feed water. The accumulator AC1 accommodates thermal expansion and contraction of the feed water. The CCA is instrumented with pressure and temperature sensors and the valve position indicator required to monitor its performance.

The WT1 is a metal bellows tank which supplies static replenishment to the electrolysis module. The tank is refilled every three hours as previously explained. The sensors which provide for monitoring of the tank are included in the FCA.

The startup, shutdown, and other mode transition sequences are software controlled. Any out of range sensor reading will cause an automatic shutdown of the subsystem.

3.2.2 SFE Performance Analysis

The SFE-III was delivered to MSFC through Boeing Aerospace in the fall of 1986 and was set up for phase II testing which began in spring of 1987. Over a period of approximately 5 months, a total of 248 h of testing was completed. Following the phase II testing, the SFE-III was integrated into the phase III test hardware.

During the phase III testing, the SFE-III ran for a total of 266 h in the normal mode and experienced only one shutdown. The SFE was integrated with the Bosch-II for a total of 257 h, or approximately 97 percent of its operating time. During that time, the SFE performed its function of delivering oxygen to the atmosphere and hydrogen to the Bosch CO_2 reduction subsystem. The paragraphs below analyze specific experiences during that test time.

During the first day of testing it was noticed that the condensate trap in the SFE H_2 line was approximately one-third full of liquid. The trap had been checked and found empty during the startup procedure. It is not known when or how the liquid was expelled from the cell stack. Since the subsystem sensors indicated that the SFE was functioning normally, it was decided to continue the test. The trap was subsequently drained, and the liquid was analyzed. It proved to be 24.9-percent KOH. A potential source of the liquid could be leaky feed cores which, in the SFE vintage design, were constructed with an epoxy prepreg edge seal. This type of seal has been known to degrade during exposure to electrolyte with time (usually over a period of several years). A new feed core design is now used on all subsequent electrolyzers. This core uses a new edge seal which is resistant to the electrolyte.

The SFE is integrated with the Bosch by configuring a three-way valve, EVA03, to send the SFE product hydrogen to the Bosch hydrogen inlet rather than to the vent line. During initial attempts to integrate the two subsystems, when EVA03 was switched to its integrated position, the hydrogen flow dropped below zero, as measured by flow sensor EIF03. At the same time the hydrogen concentration in the SFE hood, measured by EIG01, increased. Leak check of the line between the SFE and the Bosch showed that the dew point sensor connection was loose. Once this connector was tightened, the SFE and the Bosch were successfully integrated. During the fourth day of testing the SFE was inadvertently shutdown due to facility work which was not related to the SIT. When subsystem power was restored, the SFE transitioned to the shutdown mode which is normal procedure. During the restart, the transition to normal mode was nominal and no liquid was accumulated in the H_2 condensate trap.

For the first few days of testing, the SFE cell voltages ran slightly higher than expected, though they never reached the warning level. High voltages generally indicate that the cells are being dried out. This can be prevented by increasing the cell stack operating temperature in order to increase the rate of diffusion of feed water to the cell matrices. On the fifth day, the temperature set point for the water inlet to the cell stack was increased from 141 ± 2 °F to 143 ± 2 °F. This served to reduce the cell voltages to nominal levels. However, increasing the ETT1 set point also caused the oxygen outlet temperature, ETT2, to increase so that it repeatedly bounced in and out of its warning range. This was an intermittent nuisance for the remainder of the test. This nuisance could have been corrected by making a set point change for T2. The high warning and high alarm on T2 should have been increased in conjunction with the increase of the T1 control points. However, since ETT2 remained well below the alarm level, the SFE performance was not affected.

3.2.3 Discussion of Results

All subsystem measurements indicated that the SFE was performing nominally at a threeman level throughout the SIT. However, the three-man operating level was not verified by the integrated system/subsystem instrumentation downstream of the SFE or by the water intake measurement.

The weight of the facility deionized water tank was recorded after each subsystem tank fill. Subsystem tank fills occurred automatically at 3.06-h intervals. The SFE water intake was averaged over 84 such intervals to yield a water consumption rate of 2.766 kg/day (6.097 lbm/day). The water content of the product oxygen and hydrogen was approximately 0.0095 and 0.01 kg/day (0.021 and 0.022 lbm/day), respectively, as indicated by the sample analyses. The water electrolysis rate, therefore, was approximately 2.75 kg/day (6.054 lbm/day) which is 97.5 percent of the three-man rate.

The average flow in the oxygen outlet line was approximately 1.165 slpm as indicated by EIF01. Adjusting for the water and hydrogen content of the oxygen stream yields an oxygen production rate of 2.206 kg/day (4.853 lbm/day). This is 87.9 percent of the three-man rate or 90.2 percent of the rate which would correspond to the water consumption rate. Similar calculations for the hydrogen stream indicate a hydrogen production rate of 0.246 kg/day (0.541 lbm/ day) which is only 78.4 percent of the three-man rate and only 80.4 percent of the amount indicated by the water consumption rate.

The hydrogen sensor in the SFE hood showed a positive reading for most of the test. This indicates a possible hydrogen leak which would account for some of the discrepancy in the inlet and outlet flow measurements. The leak is most likely from interconnecting lines between the SFE and the Bosch because the SFE subsystem had been successfully helium leak checked to a level of 1×10^{-7} cc/s. It is not possible to quantify the leakage.

Other possible sources of inaccuracies include flow sensor calibration, interpretation of flow sensor output, and measurement of the water content of the product gases. In any event, an accurate mass balance cannot be done with the available data (Fig. 17). This will be performed in future tests.

3.2.4 Recommendations/Lessons Learned

Prior to the SIT, the SFE was last tested in the phase II metabolic control test (MCT) in 1987. During that test, recovered hygiene water was used as SFE feedstock. Following the MCT, the SFE, still containing the poor quality hygiene water, was stored for 2 years. No precautions were taken to prepare the SFE for this long period of storage. It is possible that this storage period and the out-of-limits water quality adversely affected the SFE voltage during the SIT, thus requiring a slight increase in operating temperature. Appropriate post-test procedures should be developed for flushing the SFE should it be tested with out-of-limits hygiene or other waters.

In order to determine actual subsystem performance, it is necessary to do an accurate mass balance. This cannot be done without accurate flow measurements and accurate sample analyses. For future testing it is imperative that flow sensors be accurately calibrated and that their output be correctly interpreted. Greater care must also be taken to assure reliable sample analyses. Future tests are planned in which the errors will be remedied.

A thorough leak check of the subsystem, as well as of the facility, should be performed prior to testing. Removal from or addition to the subsystems or facility of any component should warrant a repeat leak check.

3.3 Bosch Carbon Dioxide Reduction Subsystem

3.3.1 Detailed Description

The Bosch II, shown in Figure 18 as it was situated inside the CMS and schematically in Figure 19, is the second Bosch built by Life Systems Inc. and was designed to reduce an equivalent of a three-man rate of metabolic CO_2 production, or 3.0 kg/day (6.6 lbm/day). CO_2 is fed to the subsystem where it is mixed with recycled gas and pumped downstream by a variable-speed compressor (C01). A slipstream of the resulting gas mixture is directed through a gas composition controller (CG1) which measures and compares its thermal conductivity to a set point and then meters in the appropriate amount of feed hydrogen through a variable orifice valve. Excess feed hydrogen is vented through an internal relief valve (RV2). Downstream of the compressor, two 4-way valves (V5 and V6) direct the gas flow to one of the two identical reactors. Upon entering the reactor assembly, the gas is preheated through a regenerative heat exchanger, then flows through the packed bed of iron (steel wool) catalyst. At a 922 K (1,200 °F) bed temperature, the CO_2 and H_2 are converted to solid carbon (which is deposited on the iron catalyst) and water vapor. Figure 20 is a photo of the typical solid carbon product. Approximately 6 percent of the reactants are converted per pass, requiring around a 15:1 recycle ratio for complete conversion. The reaction products, consisting of unreacted CO_2 and H_2 , intermediate and side reaction

Note: Only 89% of the inlet flow Can be accounted for in The Outlet Flow. Figure 17. SFE mass balance.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 18. Bosch subsystem.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 19. Bosch II subsystem schematic.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY products CO and CH₄, product water vapor, and contaminant N₂, exit the reactor assembly through the regenerative heat exchanger to the liquid-cooled condenser/separator. Condensed product water collects in an accumulator which is periodically emptied through valve V9. Two liquid level sensors (Y1 and Y2) indicate when the accumulator is full or empty and signal the pump motor (M2) to turn on or off. If the tank does not reach the full level within every hour, a water dump will automatically be initiated. The remaining dry gas mixture is recycled and mixed with fresh inlet reactants. Typically, inlet CO₂ from the CO₂ removal subsystem will contain a percentage of contaminant air. Because the inert nitrogen does not react, it causes a pressure buildup in the Bosch. As a result, it is necessary to bleed off a portion of the recycle mixture through a back pressure regulator (PR2) set at the desired maximum reactor inlet pressure. When the reactor cartridge becomes full of carbon as indicated by differential pressure, between P1 and P3, the subsystem automatically switches over to the alternate reactor. The full cartridge is removed from the reactor assembly once cooled (Fig. 21), and a fresh one installed. Facility CO₂ is used to purge the reactors prior to startup and following switchover or shutdown.

3.3.2 Bosch Performance Analysis

The Bosch II was delivered to MSFC through Boeing Aerospace in the fall of 1987 and was set up for independent bench testing. Approximately 1,300 h of testing over a 20-month period was completed on the unit prior to the SIT. Several full cartridge runs were performed with pure reactants and different man rates of feed. The unit was then modified to accommodate testing with impure CO₂ (containing N₂ from the 4BMS) by adding a bleed vent along with a back pressure regulator and modifying the appropriate control set points. Additional testing following the modification included runs with various levels of N2 mixed with the reactant CO2. A total of 37 anomalies associated with the subsystem were logged during the bench testing. These anomalies included numerous heater burn-outs; failures of thermocouples and other sensors; electrical noise problems resulting in random valve movement; failures of controller cards; leakage from the compressor, reactors, fittings, and valves; a compressor coupling mechanical failure; and numerous lessons learned regarding proper control sequencing and software, particularly in regard to implementing the modifications to accommodate inerts in the CO₂ feed. All of the anomalies applicable to the Bosch III comparative test unit have been tracked and some design changes made to ensure that the same problems would not recur on the development and flight unit. All of the anomalies except four were resolved prior to the SIT. These resolutions resulted in many improvements to the Bosch II, including electrical, heater, software, and reactor seal surface redesigns.

In addition to serving to develop the Bosch hardware technology, the independent testing that was performed supplied valuable performance data, especially in the areas of transients over a full cartridge and operation with inerts. For instance, it was discovered that the maximum rate of CO_2 reduction declines over the life of a cartridge as carbon is deposited on the catalyst. Also, data gathered on cartridge delta pressure trends was used to determine the appropriate switchover point. Bleed gas flowrate and composition were measured and used to provide preliminary estimates of the resulting load to the trace contaminant control subsystem catalytic oxidizer. Finally, data from analyses of Bosch product water samples generated during testing with inerts showed the presence of relatively high concentrations of ammonia, however, a correlation between the amount of ammonia produced given a percentage N_2 and CO_2 has not been established. Where possible, such data as discussed has been factored into the ongoing development of an analytical model for the Bosch and used in system impact studies.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

Figure 21. Bosch cartridge.

As previously mentioned, there were four open anomalies on the Bosch going into the SIT. These were as follows:

(1) Random valve movement, presumably due to electrical noise. Although redesign of the four-way valve circuitry now prevents these valves from moving inadvertently, the two-way valves are still susceptible to noise voltage. Since actuation is rapid there have been no noted adverse effects from these slight movements, which is why it was decided to proceed into the SIT with this anomaly still open.

(2) Compressor stills. Short "hiccups" in compressor operation have been evident as long as the valve clicking. More recently, complete stalls have occurred requiring manual intervention to correct. It is not known whether the short "hiccups" are related to the longer stalls. This anomaly was also not considered a "show stopper" going into the SIT since it was felt it could be corrected if it occurred.

(3) Purge pressure creeping up into alarm levels during normal processing mode. This anomaly occurred during the independent/performance test run on the Bosch just prior to the SIT. To get through the test a fitting had to be cracked periodically to relieve pressure accumulating in the purge line. Following the test troubleshooting was performed to see if the inlet purge valve V3 was leaking through. It apparently was not, and it was decided to proceed into the SIT after adding a hand valve in the purge line to relieve pressure if necessary. This will be investigated further in future tests.

(4) High methane production from the Bosch reaction. Gas samples of the bleed taken during the independent/performance test showed a 50-percent concentration of methane, which is much higher than expected. Prior to the test, the reactor heaters had been redesigned to accommodate thicker thermocouples in hopes of resolving the ongoing problem of thermocouples failing in the high temperature environment of the reactors. Since the new thermocouples are imbedded within the heaters instead of laid along the outside surface, they now read a higher temperature than before and thus control the heater to a now lower actual temperature. The resulting bed temperatures read during the independent/performance test were 150 to $200 \pm F$ lower than in previous testing. It is suspected that the lower temperature favors the exothermic side reaction more than before, thereby producing more methane. There was also a discrepancy between the amounts of carbon and water produced which also can be attributed to the lower reaction temperature and explained by carbon going to methane via the side reaction $C + 2H_2 = CH_4$. Prior to the SIT, insulation was added around the outside reactor canisters in hopes of reducing heat loss and raising the bed temperatures and reducing the amount of methane produced. Plans are to perform further tests, prior to the next integrated test, to assure proper reaction temperatures are achieved.

Of the four open anomalies going into the SIT, two were not repeated during the test. No compressor stalls were noted. It is possible that the compressor "hiccups" may have occurred, but since personnel were only in the test chamber for short periods of time, they may have not been noticed. Secondly, the purge pressure anomaly did not recur. No increases in the purge line pressure during normal processing were recorded.

Two of the previous anomalies were still evident in the SIT. Audible valve clicking was noted by personnel in the chamber throughout the test. Again, subsystem operation was apparently

unaffected. Also, although the added reactor insulation served to raise the bed temperature by approximately 40 °F, there was still a high methane percentage in the bleed gas (45 percent) and a discrepancy between the carbon and water production rates. One additional anomaly is being tracked as a result of a post-test leak check. It was discovered that the socket head cap screws which seal the reactor back flange were loose following the test. It is not known at what point during the test they became loose, but it is probable that there was some leakage of recycle loop gases as a result. This problem has occurred in prior bench testing. It is suspected that the cause is thermal expansion due to different materials used for the flange and the screws rather than a vibration problem. Solutions to the problem are presently in work.

3.3.3 Discussion of Results

The Bosch subsystem ran a total of 273 h in normal mode during the test with no shutdowns. It ran integrated with the 4BMS and SFE subsystems for 154 h, or approximately 56 percent of its operating time. This test represented the longest continuous run on the Bosch II as well as the first time it was integrated with other air revitalization subsystems.

Processing was started on Bosch reactor No. 1 and the subsystem was run independently off facility reactant gases until it was integrated with the SFE after 6 h. Following integration it was evident that there was a severe hydrogen leak between the two subsystems as the inlet H_2 flowrate to the Bosch dropped from 2,700 ccm to 1,000 ccm. The source of the leak was not found until the following morning at the hydrogen inlet to the gas composition controller within the Bosch. After tightening the loose fitting causing the leak, the H_2 inlet flowrate read about 2,200 ccm, or about 2.8-man rate. Because of the system instrumentation problem, integration of the Bosch with the 4BMS was not attempted for another 26 h after this point.

Upon integrating the 4BMS with the Bosch, it became apparent that there was insufficient regulation between the two subsystems. Too much initial CO₂ flow from the accumulator caused internal pressures within the Bosch to rise and sent it into an automatic reactor switchover. After 1 h, the 4BMS and Bosch were deintegrated and a metering valve was added in the interface to better regulate the CO₂ flowrate. The subsystems were then reintegrated and the flowrate adjusted to the maximum level that could be processed with the available H_2 that the Bosch was receiving. Because it was found to be difficult to maintain a constant flowrate when the upstream CO₂ accumulator pressure was cycling, a pressure regulator was also added just upstream of the metering valve after the Bosch had completed its reactor switchover. At that point, it was decided that the test would be continued until the new reactor cartridge was full of carbon and switchover back to reactor No. 1 had been completed. This was expected to take another five days at a three-man rate of operation. It actually took an additional eight days because only a two-man rate of CO₂ reduction was achieved. This will be discussed in more detail in a later section. The Bosch ran the remainder of the test integrated with the SFE except for one electrolyzer shutdown that lasted about 5 h. Integration with the 4BMS was intermittent for the remainder of the test because of air leakage problems with that subsystem which caused the percent O₂ in the CO₂ to rise to an unacceptable level (less than 2 percent). The first bleed flow from the Bosch began approximately 14 h after switchover and was routed to the TCCS. The bleed was diverted to vent a number of times during the remainder of the test because the unexpectedly high amount of methane in it was causing the TCCS catalytic oxidizer temperature to rise above desired levels. Samples of the Bosch bleed were taken three times during the test.

Because of the discrepancy between the total amounts of water and carbon produced by the Bosch reaction, it was difficult to tell when the reactor cartridge should have been full and switchover initiated. The reactor differential pressure which signals switchover at 10 psid became somewhat erratic and rose slightly, but not enough to trigger a switchover. Finally, because it was believed from the water production that the carbon cartridge should have been overfilled, the delta pressure set point was lowered and the compressor speed raised to force initiation of switchover. After a successful switchover the subsystem was shutdown.

Figure 22 gives an overall mass balance around the Bosch subsystem for the test. The flowrates, shown in kg/day, are averages over the length of operation on the second reactor cartridge.

Because there was no good instrument from which its flowrate could be determined, the CO_2 flow into the Bosch during the test was unknown. The H₂ inlet flowrate was measured by two sources. The facility inlet H₂ flowmeter, WF03, averages 0.258 kg/day (0.569 lbm/day) (converted from a volumetric reading in slpm). In addition, the subsystem also has an internal H₂ inlet flowmeter. This flowrate in past testing has usually matched well with CO_2 fed and products formed. For the test it averages 0.229 kg/day (0.505 lbm/day), or a 2.5-man level. Figure 23 compares these two as-read flow readings over an excerpted time slice of the test. The changes in each reading are consistent with each other, although their absolute values are somewhat different. The difference may have been due either to a leak between the sensors or simply error associated with one or both readings. There may also have been a hydrogen leak upstream of WF03 as well, since the flowrate measured by both sensors was lower than the expected rate of 0.313 kg/day (0.69 lbm/day). Had this flowrate been achieved there would have been excess hydrogen, since the Bosch does not use all the H₂ generated when the electrolyzer produces O₂ at a three-man rate. Instead, the Bosch took in all that was available and the CO₂ flow had to be metered down accordingly.

The average carbon production rate was calculated by measuring the final weight of the cartridge, subtracting the initial weight, and dividing by the number of days of operation on reactor No. 2. The result was an average net deposition rate of 0.386 kg/day (0.85 lbm/day), or a 1.42-man level equivalent.

Figure 24 is a plot of water production for the test, determined by hourly volumetric measurements of water dumped. For reactor No. 2 only, the total water produced was divided by time to get an average rate of 1.63 kg/day (3.6 lbm/day), or a two-man level.

The flowrates of constituents in the bleed were determined by first estimating an average bleed flow for reactor No. 2 from a plot of flowmeter WF02. This was calculated as approximately 220 ccm. Next, an average bleed composition was calculated from the results of analyses of the three gas samples (Table 1) and normalized to a 100 percent total. These volume percentages were multiplied by the average total flowrate to get the volumetric flowrates of each constituent, which were then translated into the mass flows given in Figure 22. For the most part, the total bleed flowrate and percentages were consistent with expected performance. The exception is the high percentage of methane as previously discussed.

A complete mass balance cannot be performed around the Bosch since the inlet CO_2 rate was unknown. However, a balance around H_2 shows that the H_2 out in the product water and bleed

Figure 23. Bosch H₂ feed flow (WF99) and H₂ inlet flow (WF03).

Figure 24. Bosch water production during SIT.

analysis.
bleed
Bosch
Ξ.
Table

		SAMF AUGUST	1ED 4, 1989		AU	SAMPLED GUST 7, 19	68	SAMF AUGUST	LED 8, 1989
TIME SAMPLE TAKEN	10:00	10:45	11:45	12:15	12:30	12:49	13:47	13:10	13:36
ANALYTES UNITS	BOSCH BLEED	BOSCH	BOSCH BLEED	BLEED	BOSCH BLEED	BOSCH BLEED	BLEED	BOSCH	BOSCH
CO ₂ % VOL			6.	1.5	2.0			3.1	
H ₂ % VOL			11.0	13.8	14.8			18.2	
N ₂ % VOL			39.6	37.1	33.6			16.3	
02 % VOL			5.4	6.9	7.2			6	
H ₂ O VAPOR % VOL	.85						.35		
CH ₄ % VOL			42.1	40.9	46.7			53.8	
CO % VOL			ND	< .2	3.8			<u>0</u> .6	
AMMONIA ppm		3.6				1.3			7.
TRACE ORGANICS ppm			QN	-					
LAB	BE	BE	ЧM	BE	BE	BE	BE	BE	BE
BE – BOEING ENVIRONMENTAL LAB MP – MATERIALS AND PROCESS LAB ND – NONE DETECTED									
								2-9	021-0-220

constituents containing hydrogen accounts for over 91 percent of the H_2 fed in. It is possible that the remaining hydrogen can be accounted for in the instrumentation and sample analysis error, or leakage, if the leak found at the back of the reactor was present during part of the test. Because of the large amount of methane formed and lost in the bleed, all of the H_2 fed did not go to product water (2.5-man rate of H_2 feed versus 2-man rate of H_2O produced). Even less carbon was deposited than water formed on a man-level basis. A total of 17.9 man-days of H_2O was produced on cartridge No. 2 while only 12.8 man-days of carbon had accumulated. In testing prior to the heater thermocouple improvements these totals corresponded much more closely.

If a mass balance is performed around carbon and the assumption made that none was lost through any leakage of CO_2 or other carbon-containing compounds, an estimate can be backed out for the average amount of CO_2 fed. This result is approximately 1.71 kg/day (3.78 lbm/day) CO_2 , or a 1.72-man level. If it is then assumed that all of the N₂ detected in the bleed came from air in the feed CO_2 , the average volume percentage of air would have been around 10.5 percent. Sample results from 4BMS CO_2 analyses averaged some 18-percent air which is higher, but the Bosch feed was alternated between 4BMS CO_2 and facility CO_2 which contained no air. At any rate, these percentages are at least four times higher than the S.S. Freedom specification of 2.5 percent maximum air in CO_2 . Any air contamination impacts Bosch efficiency, resulting in loss of reactants through the bleed and increasing operating pressure.

Since the Bosch was the one subsystem in the test which was integrated with all three of the other subsystems, some discussion is called for concerning what was learned about the performance of the interfaces.

As discussed previously, since the CO_2 is held in an accumulator whose pressure cycles from 1.38×10^5 to 2.76×10^5 Pa (20 to 40 psia), regulation for constant pressure and flowrate was found to be needed for the Bosch. Since the Bosch can only regulate the H₂ feed for a given amount of CO₂, any excess CO₂ over the maximum amount of H₂ available causes Bosch internal pressures to rise and the reaction to cease. A significant pressure rise will initiate automatic reactor switchover. Figure 25 is a plot of H₂ flowrate metered by the Bosch as it adjusted to the inlet CO₂ before and after the proper pressure regulator was installed. The cycles before correspond to the 55-min cycles of the 4BMS and are a result of varying pressure from the CO₂ accumulator. After the regulator was installed, these cycles were dampened out and the Bosch operated at a more steady rate.

As mentioned in the discussion of the mass balance, normally the Bosch is fed more hydrogen from the SFE than it needs to reduce a three-man rate of CO_2 . The excess H_2 would then be expected to build in pressure at the interface until it is relieved to vent through the Bosch via RV2 (Fig. 19). Since the H_2 flowrate to the Bosch was less than what was expected, there was no excess and this interplay could not be observed. There were several instances during the test when either the CO_2 bottle was changed or the CO_2 was sampled that the inlet H_2 pressure spiked enough to cause some venting, but for the most part the vent flow was zero. In all other respects the SFE/Bosch interface worked well. No flow regulation is needed because the Bosch handles variations internally. The SFE delivers H_2 at a pressure regulated by the downstream components and its output was sufficient to handle the back pressure from the Bosch.

There were also no problems encountered controlling the interface to the TCCS for the Bosch bleed, and none were expected. A three-way valve was used to divert the bleed to vent when necessary.

Table 2 gives the results of the laboratory analysis performed on the Bosch product water samples taken during the test. The pH value of 7.2 is consistent with past water samples and is fairly neutral as expected.

Of the metals analyzed, all were below detectable limits except for calcium, which still had a low concentration of 0.15 ppm. These results are also consistent with past water sampling as there has never been any metal detected over 0.27 ppm (zinc in December 1987 bench test).

The amount of total solids present in the water for this test was an improvement over past testing. Typically, solid concentrations between 10 and 20 ppm have been previously detected, but during the SIT there was less than 10 ppm.

Anions were also very low as expected. One surprising result of the analysis was the relatively low ammonia concentration compared with past samples. Since previous testing with nitrogen in the feed CO_2 resulted in ammonia concentrations in the water between 1,000 and 1,250 ppm, it was expected that the result from the SIT would be at least that high, considering the rate of air leakage from the 4BMS. However, only 92.6 ppm was detected. All that can be concluded at this point is that more testing is needed before a determination can be made as to what level of ammonia can typically be expected.

3.3.4 Recommendations/Lessons Learned

The SIT was considered an overall success for the Bosch. There were no automatic shutdowns during the 11-day test, and the unit performed well with the feed rates it was given. However, as a result of the test and follow-up analysis, there are several recommendations to be made regarding future testing.

First, for the subsystem, the heater set point should be raised enough that the reactor bed temperatures are restored to 922 K (1,200 °F) for the present iron catalyst. An alternative would be to change to a nickel catalyst being considered pending some results from comparative testing of the Bosch III. If a nickel catalyst is used for future testing, the current bed temperature would probably be adequate and no heater changes would have to be made.

For the system, all interfaces to the Bosch should be leak checked with helium prior to another integrated test. All flowmeter calibrations should be verified in-house instead of relying on manufacturer's calibration curves. In some cases the calibrations were off even though they had supposedly been performed using the correct gas and operating pressure.

One final recommendation for the flight system design stems from what was learned about the 4BMS/Bosch interface. If there is a loss of delivered CO_2 from the 4BMS for any reason, the Bosch can adjust by automatically closing off the inlet H_2 through the gas composition controller. However, if there is a loss or sudden decrease of feed H_2 from the SFE, the current Bosch design

analyses.
water
reduction
CO_2
Bosch
Table 2.

ş

			SAMPLED AU	GUST 4, 1989		SAMPLED AUGUST 6 1989
TIME SAMPI E TAKEN		02:23 - 14:30	14:30 - 19:00	19:55	21:06	21:31
	1 INITS	BOSCH WATER	BOSCH WATER	BOSCH WATER	BOSCH WATER	BOSCH WATER
ANALYIES						
На				7.2		
TOTAL SOLIDS	рот				< 10	
TOTAL DISSOLVED SOLIDS	bom				< 10	
TOTAL SUSPENDED SOLIDS	ШÓД				< 10	
TURBIDITY	NTU			9.6		
DISSOLVED 02	DOM			2.02		
		5				
BARIUM	шdd	10. v				
CADMIUM	moa	×				
CALCIUM	шод	<u>6</u>				
CHROMIUM	mod	9 <u>0</u> .v				
IRON	шoq	c0. >				
MAGNESIUM	mon	<.01				
MANGANESE	mon	< .01				
MOLYBOENUM	mon	60 >				
NICKEL	mina	<.11				
SILVER	mon	<.14				
ZINC	mon	< .02				
AMMONIA	mod					92.60
CHLORIDE	mod					10
FLORIDE	mon					.27
NITRATE	moo					<.120
PHOSPHATE	DOIL					<.190
POTASSIUM	рош					1.03
SULFATE	mod			_		<.190
			40.000			
HETEROTROPHS	CFU/100mi		10.000			
GRAM NEGATIVE	CFU/100ml		7.500			
GRAM POSITIVE	CFU/100ml		0			
YEAST AND MOLD	CFU/100ml		< 100 <			
						DC
LAB		Bt	BE	BE	RF	DE
BE - BOEING ENVIRONMENTAL I CELL - COLONY FORMING UNITS	LABORATORY					
						5-8742-0-220

has no means of reducing the inlet CO_2 accordingly. This has the result of stopping the reduction reaction and raising internal pressures within the subsystem, either sending it into automatic switchover or causing it to vent the CO_2 through the bleed to the TCCS and ultimately back into the cabin. To avoid this, the air revitalization system design should incorporate the proper instrumentation and controls which will redirect the CO_2 flow away from the Bosch if there is a loss of H₂ inlet pressure.

3.4 Trace Contaminant Control Subsystem (TCCS)

3.4.1 Detailed Description

The TCCS removes trace gas contaminants from the module atmosphere by circulating air through a series of packed sorbent beds and a high temperature catalytic oxidizer (Fig. 26). Located in either a high-flow or low-flow branch of the TCCS, each trace contaminant removal subassembly targets a range of contaminants to provide an efficient contamination control approach. Table 3 details some subassembly feature while Figure 27 illustrates the location of each sub-assembly in the TCCS.

The high-flow branch consists of a vane axial fan which draws $0.011 \text{ m}^3/\text{s}$ (24 cfm) through a fixed charcoal bed. The charcoal bed contains 21.8 kg (48 lbm) of phosphoric acid-impregnated activated carbon. This bed functions as a removal device for high molar volume contaminants and for ammonia [7].

Approximately 0.0015 m³/s (3.2 cfm) of the high-flow branch is drawn into the low-flow branch by a centrifugal blower, processed, and mixed with the air in the high-flow branch before exhausting to the test chamber atmosphere. This branch contains a regenerable charcoal bed, a lithium hydroxide (LiOH) presorbent bed, a high-temperature catalytic oxidizer, and a LiOH postsorbent bed. The regenerable bed was operated empty since the present S.S. Freedom TCCS design concept does not include a regenerable bed. If it was operated with the regenerable bed, the bed's function is to remove low molar volume contaminants. The presorbent bed contains 0.91 kg (2.0 lbm) of LiOH sorbent which removes acidic gases and potential catalyst poisons from the air before it enters the catalytic oxidizer. The catalytic oxidizer then oxidizes any contaminants which have not been removed by the fixed charcoal bed and presorbent bed. This assembly consists of a five-pass crosscurrent flow plate fin heat exchanger and an electrically heated catalyst canister. Air enters the heat exchanger where it is preheated by exiting air. The air is heated to the final operating temperature by two 70 watt electric heaters located in the catalyst canister. Heated air flows through a bed of 0.5 percent palladium on 3.18 mm (0.125 in) diameter alumina (Al203) spheres. Contaminants which are not easily removed by the preceding removal assemblies are oxidized in the canister. Air containing oxidation products flows out of the catalytic oxidizer assembly and into a LiOH postsorbent bed which contains 1.4 kg (3.0 lbm) of LiOH. The oxidation products are removed in this bed and clean air flows back to the high flow branch and is then exhausted to the cabin atmosphere [8].

The SIT was the first time that the TCCS had been integrated with other ECLSS subsystems. The air inlet to the fixed charcoal bed was interfaced with the temperature and humidity control system. This interface reduced the relative humidity of the inlet air to enhance contaminant

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS OF POOR QUALITY

Figure 26. Trace contaminant control system.

COMPONENT	FLOW (m•/s)	LENGTH (m)	DIAMETER (m)	∆P (Pa)	MASS (kg)
Fixed Bed	0.0165	0.381	0.330	623	30.4
Presorbent Bed	0.00212	0.152	0.127	237	1.59
Postsorbent Bed	0.00212	0.222	0.127	386	2.04
Catalytic Oxidizer	0.00212	0.0914	0.0558	1490	14.1
Axial Fan	0.0165	0.146	0.114	672	1.35
(11500 RPM/55W) Centrifugal Blower (22500 RPM/90W)	0.00423			4230	1.02

Table 3. TCCS subassembly characteristics.

Figure 27. TCCS schematic.

ORIGINAL PAGE IS OF POOR QUALITY

removal and avoid contaminant displacement by water vapor. The major interface was with the Bosch carbon dioxide reduction subsystem. The Bosch process produces a bleed stream of reactants, inerts, and reaction products such as methane, carbon monoxide, hydrogen, nitrogen, oxygen, and carbon dioxide. Methane, carbon monoxide, and hydrogen are particularly important since they are major atmosphere constituents generated from material offgassing and crew metabolic processes. The bleed stream was introduced through a port just before the presorbent bed to obtain optimum oxidation of these contaminants. The TCCS exhaust was interfaced directly with the test chamber atmosphere.

TCCS instrumentation provides simple subsystem status information on electrical current, differential pressure, and catalytic oxidizer temperature. Table 4 documents the major instrumentation measurements and their nominal values. Differential pressure measurements are taken across the axial fan and centrifugal blower to determine whether they are operating properly. Most of the other data provided relates to the catalytic oxidizer operating conditions. The catalytic oxidizer heater current is monitored and is used as a control input to an overcurrent cutoff switch which shuts down the heater current in the event of a power surge. Likewise, the catalytic oxidizer temperature is monitored by a thermocouple probe which monitors the catalytic oxidizer external canister temperature. This temperature reading also serves as a control input for an overtemperature cutoff switch which shuts down the heater current. The temperature limit is required to protect the catalyst from extremely high temperatures which may result in its thermal degradation. A flow measurement was added in the low flow branch to aid in conducting mass and energy balances on the catalytic oxidizer assembly. Figure 27 shows the location of the major instrument readings.

3.4.2 TCCS Performance Analysis

The TCCS operated with few complications during the entire test. The major adjustment made during the test was to integrate and deintegrate the TCCS and Bosch bleed stream as necessary. Also, the catalytic oxidizer thermocouple probe which provides temperature readings would vibrate loose from its contact point and required minor adjustment periodically. These anomalies will be corrected by modifying the TCCS.

3.4.3 Discussion of Results

Design documentation for the TCCS shows that the subsystem should operate at 0.017 m³/s (35 cfm) in the high flow branch and 0.00201 m³/s (4.25 cfm) in the low flow branch. These flow rates produce a pressure drop of 669 Pa (0.097 psi) and 4,206 Pa (0.61 psi) across the vane axial fan and centrifugal blower, respectively. The catalytic oxidizer external canister temperature reaches 616 K (650 °F) which corresponds to an air temperature of 672 K (750 °F). Figure 28 shows the expected catalytic oxidizer operating point. At this temperature approximately 9 percent of the methane and 100 percent of the carbon monoxide and hydrogen will be oxidized per pass.

The TCCS performance during the SIT exceeded the expected performance for methane oxidation, 67.3 percent per pass, but fell short of expectations for carbon monoxide oxidation which achieved only 83.1 percent per pass. Sample analysis results illustrating these efficiencies are summarized in Table 5. The increase in methane conversion was accompanied by an increase in

MEASUREMENT	TEST ID NUMBER	UNITS	NOMINAL VALUE
Catalyic Oxidizer Heater Current	JI01	Amps	1.3
Catalyic Oxidizer Cannister Temp	JT01	Fahrenheit	680
Centrifugal Blower Differential Pressure	JP01	in. H ₂ O	17
Axial Fan Differential Pressure	JP02	in. H₂O	3.5
 Low Flow Branch Flow Rate	JF01	ft ³ /min	3.2

Table 4. TCCS process measurements.

Figure 28. Catalytic oxidizer performance at 4.2 CFM air flowrate.

.

SAMPLE IDENTIFICATION	CAT. O SAMPLE		CONCEN		CONVE	ERSION
NUMBER	Inlet	Outlet	CH₄	CO	Сн₄	со
JS6-EH-0935-[8-3-89] * JS7-EH-0945-[8-3-89] *	x	x	30.21 ppm 0.00 ppm	0.00 ppm 0.00 ppm	-	-
JS6-EH-1102-[8-3-89] JS7-EH-1105-[8-3-89]	×	x	4543.9 ppm 956.1 ppm	171.6 ppm 26.1 ppm	0.790	0.848
JS6-BAC-0657-[8-4-89] JS7-BAC-0659-[8-4-89]	x	x	0.13 vol% 0.05 vol%	<0.2 vol% <0.2 vol%	0.615	-
JS6-BAC-1232-[8-4-89] JS7-BAC-1236-[8-4-89]	×	x	0.17 voł% 0.04 vol%	<0.2 vol% <0.2 vol%	0.765	-
JS6-EH-1632-[8-4-89] JS7-EH-1642-[8-4-89]	×	×	3204.13 ppm 694.59 ppm	147.12 ppm 24.28 ppm	0.783	0.835
JS6-EH-0818-{8-5-89} JS7-EH-0826-[8-5-89]	×	×	2693.05 ppm 835.23 ppm	135.46 ppm 23.18 ppm	0.690	0.829
JS6-BAC-1524-[8-7-89] JS7-BAC-1525-[8-7-89]	×	×	0.16 vol% 0.07 vol%	<0.2 voi% <0.2 voi%	0.562	-
JS6-BAC-1734-[8-8-89]* JS7-BAC-1737-[8-8-89]*	×	×	<0.4 vol% <0.4 vol%	<0.2 vol% <0.2 vol%	-	-
JS6-EH-1057-[8-10-89] JS7-EH-1101-[8-10-89]	×	×	2735.94 ppm 470.10 ppm	141.35 ppm 26.44 ppm	0.828	0.813
JS6-EH-0915-[7-31-89] JS7-EH-0919-[7-31-89]	×	×	25.0 ppm 16.2 ppm	-	0.352	-
AVERAGE CONVERSION					0.673	0.831

Table 5. Summary of TCCS sample analysis results.

* Background samples not included in performance evaluation.

the catalytic oxidizer operating temperature. The external canister temperature averaged 650 K (710 °F) during the time the TCCS was integrated with the Bosch. This corresponds to an air temperature of 711 K (820 °F). Figure 29 shows the actual catalytic oxidizer operating point. Differential pressures for both the axial fan and centrifugal blower were low, having values of 607 Pa (0.088 psi) and 4,109 Pa (0.596 psi), respectively. The lower differential pressure reading for the centrifugal blower was accompanied by a low branch flow rate which averaged 0.0015 m³/s (3.2 cfm). This flow rate is lower than expected but is consistent with the lower differential pressure.

Contaminants introduced into the TCCS through the Bosch bleed stream are an excellent performance challenge for the TCCS catalytic oxidizer assembly. The contaminants of interest are methane, carbon monoxide, and hydrogen. Expected oxidation efficiencies for these contaminants are 9 percent for methane and 100 percent for both carbon monoxide and hydrogen. Results of gas samples taken of the catalytic oxidizer assembly influent and effluent, shown in Table 5, show an average oxidation efficiency of 67.3 percent for methane and 83.1 percent for carbon monoxide. Hydrogen oxidation efficiency could not be determined from the sample analysis because the inlet and outlet concentrations fell below the sample analysis detector sensitivity.

Improved methane oxidation efficiency was obtained because the catalytic oxidizer temperature was much higher than expected. Figure 30 shows the expected and actual methane oxidation efficiencies as a function of operating temperature. The average temperature of 711 K (820 °F) corresponds directly to 67.3-percent methane conversion.

Poor carbon monoxide oxidation efficiency was not expected. Design literature shows that carbon monoxide oxidation efficiency is 100 percent per pass regardless of the operating conditions. The temperature experienced during the SIT should not result in poor conversion. Post-test material balances were conducted to assess this result. During the analysis, two cases were considered. The first case assumes 83.1-percent carbon monoxide oxidation overall while the second case assumes 100-percent oxidation of the feed carbon monoxide and incomplete methane oxidation with 93-percent oxidation of the carbon monoxide produced by this reaction. The second case results in an 83.1-percent apparent overall carbon monoxide oxidation efficiency and the first case also supports the test results. The second case is the more realistic since carbon monoxide oxidation should be very close to complete. Any carbon monoxide produced within the reactor would be more sensitive to residence time and may not be completely oxidized resulting in apparently low carbon monoxide oxidation efficiency [9]. Additional testing will be required to determine the actual mechanism of this result.

Post-test analysis predicting the subsystem's capability to control contaminant concentrations to levels below the spacecraft maximum allowable concentration (SMAC) indicates that the conditions of the SIT would result in a methane concentration at 23 percent of its SMAC of 1,771 mg/m³ and a carbon monoxide concentration at 76 percent of its SMAC of 28.60 mg/m³ in a closed test chamber at the end of the SIT. This performance is shown in Figure 31.

Figure 29. Catalytic oxidizer performance at 3.2 CFM air flowrate.

Figure 30. Catalytic oxidizer methane conversion performance.

Figure 31. Projected test chamber methane and carbon monoxide.

During the SIT, the catalytic oxidizer was at a much higher temperature than expected. After achieving integration with the Bosch bleed stream, the external canister temperature rose to as high as 700 K (800 °F) which corresponds to an air temperature of 755 K (900 °F). The average external canister temperature was 650 K (710 °F) which corresponds to an air temperature of 711 K (820 °F). This temperature rise results from the additional energy released by the exothermic oxidation reactions occurring in the catalytic oxidizer canister. A post-test analysis of the energy released during these reactions predicts an air temperature of 703 K (806 °F) if the design temperature of 633 K (680 °F) is reached by the heater [10]. It must be noted that the analysis assumes energy losses through conduction and radiation routes are minimal.

The high temperatures experienced during the SIT required some precautions to protect the catalyst from thermal degradation. Temperatures above 811 K (1,000 °F) may cause thermal degradation of the catalyst resulting in reduced oxidation efficiencies. Since the TCCS flow rate in the low flow branch is controlled by a fixed orifice plate, the temperature in the catalytic oxidizer could not be regulated by controlling the flow rate. Therefore, when the temperature approached 700 K (800 °F), the Bosch bleed stream was diverted to an external duct for a period of time to allow the catalytic oxidizer to cool. This technique is not desirable, especially when the Bosch bleed is continuous and must interface with the TCCS in an uninterrupted manner to achieve efficient contamination control. Modifications to the TCCS to allow flow rate regulation will eliminate the need to deintegrate the Bosch bleed stream from the TCCS in future testing.

3.4.4 Recommendations/Lessons Learned

The SIT demonstrated that the TCCS can be successfully integrated with other ECLSS subsystems and can operate continuously for extended periods of time with minimal adjustment. The oxidation efficiencies obtained in the test indicate that additional testing is required to understand and validate the TCCS removal capabilities for methane and carbon monoxide and to study efficiency sensitivity to air flow rate, catalytic oxidizer temperature, and air contaminant concentration. Also, some refurbishment of the catalytic oxidizer temperature probe and capability to control the flow rate in the low flow branch are necessary to obtain optimum performance data.

4.0 AIR AND WATER SAMPLING RESULTS

4.1 Introduction

During the phase III SIT, gas and water samples were taken to evaluate subsystem and system level performance. Gas samples were taken from the inlet and outlet of each subsystem in addition to background atmospheric samples taken within the building and module simulator. Background air samples were taken to determine if organic contaminants were present in the atmosphere which could contaminate other gas and water samples taken. Water samples were taken from the Bosch CO_2 reduction subsystem and temperature and humidity control unit. See Table 6 for a list of the subsystems sampled and their respective sample points.

The majority of all gas and water samples were taken by an assigned Boeing laboratory analyst. A few selected TCCS gas and Bosch product water samples were taken by other civil service personnel who were familiar with gas sampling techniques. The on-line gas samples were collected in 5- or 15-liter sampling bags in addition to a few TCCS gas samples which were collected using a metal evacuated cylinder. After the samples were collected for each day, they were taken to the Boeing Environmental (BE) Laboratory and/or the MSFC Materials and Processes (MP) Laboratory for analysis. Table 7 shows the sample schedule implemented by each laboratory and the analytes determined for each sample point. All subsystem sample ports were located outside the simulated module except for the TCCS and Bosch product water ports which were located inside the module.

The initial intent of the ECLSS Branch was to have two additional independent laboratories analyzing gas samples in parallel with the BE laboratory. Because of contracting problems during negotiations, the independent laboratories could not begin until after the phase III SIT. As an expedient solution, the MP Laboratory was requested to help in providing analytical services for analyzing gas samples.

4.2 Sampling Technique

All gas samples analyzed by the BE Laboratory and taken prior to August 8, 1989, were collected in 5- or 15-liter capacity, five-layer sampling bags purchased from Calibrated Instruments Inc. Gas samples taken on August 8, 1989, were collected using Tedlar film sample bags. A few gas samples analyzed by the MP Laboratory collected from the TCCS were taken using a metal

SUBSYSTEM	SAMPLE POINTS
WATER	
BOSCH	1.) PRODUCT WATER
TEMPERATURE AND HUMIDITY COMDENSATE (THC)	1.) CONDENSATE
AIR	
BOSCH	1.) REACTOR INLET 2.) BOSCH BLEED
STATIC FEED ELECTROLYSIS (SFF)	1.) PRODUCT O ₂ 2.) PRODUCT H ₂
MOLECULAR SIEVE (MS)	1.) INLET AIR 2.) OUTLET AIR 3.) CO ₂ PRODUCT TO STORAGE
TRACE CONTAMINANT CONTROL (TCC)	 PORT #6 (INLET TO CATALYTIC OXIDIZER) PORT #7 (OUTLET OF CATALYTIC OXIDIZER)
MODULE ATMOSPHERE	1.) INSIDE MODULE
4755 BUILDING ATMOSPHERE	1.) OUTSIDE MODULE

Table 6. Subsystem sample points.

								TEST	- DAY								
	7/3		8/3		8/4		8/5		8/6		8/7		8/8		8/1	0	
POINT	SAM GRO	Шı	SAMF	л С Г Г Г	SAMP GROI	JP JP	SAMPI GROU	щa	SAMP GBOU	빌린	SAMPI	Щ Д	SAMP GBQI	빌릭	SAMP GBQI	<u> </u>	
											_					+	T
BOSCH											-+				-†	+	
PRODUCT WATER					_				=		╉					-	
REACTOR INLET			Ν		>						>		>				T
BLEED GAS					≥						≥		≥			+	Τ
SFE														1		+	
PRODUCT O2			>	≥	>	N					>		>				T
PRODUCT H ₂			>	≥	>	≥				-†	>		>				T
MS			_											Ť			T
INLET AIR			>	۲II	>						>		>				
OUTLET AIR			>	١I	>						>		7		1	+	T
CO ₂ PRODUCT			>	λ.	>						>		>	T			
TCCS															Ť		T
PORT #6	≥	>	≥		≥			VIII		Ē	_ ≥		≥				Τ
PORT #7	≥	₹	≥		≥			LIIN		₹	2		≥			_	Τ
THC																	
CONDENSATE			≡		Ξ					1			╡				T
										┦							T
BUILDING			≥	⋝							≥	T	2				
										1							
MODULE			≥	₹							≥		2				
												T	T				T
LAB	BE	ΡM	BE	PM	BE	РМ	BE	МЧ	BE	M	ШШ	Μ	ШШ	Μ	BE	МЧ	Τ
BE - BOEINC MP - MATER *SAMPLE GR	a ENV IALS / OUPS	IRONN AND PF ARE [AENTA ROCE(LL LAB(SS LAE ED ON	DRAT(SORAT THE F	ORY ORY FOLLO	WING	PAGE									

Table 7. Sampling schedule.

55

5-8350-0-220

Sample Groups

Water Samples

- pH, Total Solids, Total Dissolved Solids, Total Suspended Solids, Turbidity, Dissolved O₂ Metals Cd, Ba, Ca, Cr, Fe, Mg, Mn, Mo, Ni, Ag, Zn Microbiologicals Heterotrophs, Gram Negative, Gram Positive, Total Yeast
 - = =
 - and Molds⁻ lons NH⁴ , Cl,⁻PO₄³, Fl,⁻NO₃², SO₄², K⁺ Ph, Conductivity, Total Phenols, Volatile Organics, Base Neutral/Acid Extractables

Gas Samples

- ≥
- >
- CO₂ , CO, CH₄ , H₂ , N₂ , O₂ CO₂ , CO, CH₄ , H₂ , N₂ , O₂ , H₂O Vapor CO₂ , CO, CH₄ , H₂ , N₂ , O₂ , H₂O Vapor , Ammonia CO₂ , CO, CH₄ , H₂ , N₂ , O₂ , Trace Organics ÿ.
 - <u><II</u>.
 - CO, CH4, H₂ VIII.

evacuated sample cylinder. Both a 15-liter, five-layer sampling bag and a sample cylinder are shown in Figure 32. The sampling technique used to sample the SFE, 4BMS, TCCS, and Bosch subsystems required connecting a plastic tube to the sample port, purging the sample port and tubing to remove contaminants, attaching the sample bag, and filling the bag. The sample bag had a built-in valve with a hose bib connection which was opened or closed by twisting the bib. After the bag was connected to the plastic tubing, it was quickly twirled to open the valve and allow the flow of gas into the bag. Prior to sample collection, the tubing and sample ports were purged from 15 seconds to 5 minutes depending on the flow of gas through the line being sampled. The purge times used prior to sample collection are listed below for each subsystem.

Subsystem	Purge Time
	30 s
SFE	5 min
TCCS	15 s
Bosch	
Bleed Gas Line	3 min
Inlet Feed Line	30 s

Because the gas pressure was low at the 4BMS inlet an outlet gas lines, a Teflon diaphragm pump had to be used to purge and fill the sample bags.

The analysis for water vapor in gas was done on-line by passing the sampled gas through a midget impinger filled with indicator silica gel. A wet test meter was connected to the outlet of the impinger to measure the volume of gas passing through the impinger. The impinger filled with silica gel, a desiccant which will absorb water vapor, was dried and weighed prior to the analysis. The impinger was connected to the sample port and 0.5 to 2 ft³ of gas was passed through the impinger. The impinger was taken back to the laboratory and weighed. The difference in weight was contributed to water vapor present in the gas stream.

Ammonia in gas was collected on-line by passing the sampled gas through a midget impinger filled with 0.1 normal water-sulfuric acid solution. A wet test meter was connected to the outlet of the impinger to measure the volume of gas passed through the impinger. The ammonia in the gas is converted to ammonium (NH_4+) and the concentration determined by ion chromatography.

Some of the TCCS gas samples were collected using evacuated gas cylinders. The technique used to fill the cylinder required connecting metal tubing to the sample port, purging through the port and tubing, connecting the cylinder, purging through the cylinder three times to remove contaminants, and collecting a gas sample for analysis. Initially the cylinder was under vacuum and the gas was allowed to flow into the cylinder by opening the inlet valve. Once the cylinder was full of gas, the outlet valve was opened and the gas allowed to purge through the cylinder for 3 minutes. After this period of purging, both inlet and outlet valves were closed and then reopened to continue purging for 1 minute. This process was repeated again before a gas sample was taken for analysis. Each gas sample collected in gas cylinders followed this purging sequence.

Bosch water was collected in a graduated cylinder as the water was pumped from the subsystem water tank. The cylinder was used to measure the volume of water produced so that mass

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

balance calculations could be made. Once the volume was measured, the water was either poured into the proper sample container and refrigerated or collected in another container and archived.

Humidity condensate samples were collected as condensate was produced. Condensate water was abundant and samples could be taken at any time.

4.3 Comparison of Laboratory Results

Table 8 lists the results of gas samples analyzed by both the MP and BE laboratories which were believed to have the same analyte concentrations. These samples were taken in serial order usually within minutes of each other. Because the gas samples were not collected at the same time or split from an initially filled sample bag, the samples could not be classified as true duplicate samples. The results of each set of analytes determined (CO₂, CO, CH₄, H₂, O₂, N₂) was expected to be the same, but analyte concentrations could have varied. The laboratory results which showed the largest differences are circled in Table 8. As a measure of precision, the relative percent difference (RPD) is listed below for those results. For an explanation of RPD see Section 4.5.

Analyte	Units	Result	RPD
CO_2	% Vol	3.6 0.7	133.3
_	% Vol	0.04 0.6	175.0
	% Vol	0.41 0.1	121.6
	% Vol	89.6 71.7	22.2
O_2	% Vol	9.5 6.4	39.0
N_2	% Vol	29.0 46.9	47.2
	% Vol	33.6 23.0	37.5
	% Vol	11.5 22.5	64.7
LAB		BE	MP

For real duplicate samples analyzed by separate laboratories, an RPD value of less than 20 is an acceptable goal. Other result comparisons listed in Table 8 give a calculated RPD of less than five RPD.

4.4 Results

The results for each subsystem including environmental air samples are given in Tables 9 through 15. The results are listed in chronological order, and the laboratory which performed the analysis is given at the bottom of each page. Detection limits and methods of analyses are given in Tables 16 through 18.

There were a number of parameters which were initially requested in the sample requirements for which the BE laboratory could not determine. This was due to either inadequte

comparison.
Laboratory
ж.
Table

					SAME	PLES T/	VKEN A	UGUST	3, 1989				
SAMPLE POINT	UNITS	ы С	2	ပ	0	с С	4		12	0	0	Z	
													1
BOSCH													
REACTOR INLET	<u>% X01</u>	35	A	5.9	QN	33.3	32.1	23.1	14.4	3.4	4.8	29.0	46.9
SFE													
PRODUCT 0.	NOV %	1	6			Ī			4	r L			
PRODUCT H 2	% VOI	K 04	e G	~ v				1 0					16.4
1									7 20		F d		
MS							Ì						
INLET AIR	% VOL	C.41	<u>A</u>		QN	₽ 0 >	0500	4	Q	20.1	0.00	70.0	0.04
OUTLET AIR	% VOL	.15	-	2	CZ	04	0035			22.0	F. 0.2	0.07	11.0
CO2 PRODUCT	% VOI	89 fi	717	د ۲	0007	40 4	0014				3 1		
											1	J	1
TCCS											Ī		
PORT #6	107 %	60 [.]	× 1	< 2			1	4.	QN	22.4	20.7	78.7	78.2
PORT #7	% VOI	.	 V	< 2 2	QN	< .04	0089	< 4	QN	22.3	21.4	7.77	77.6
													2
BUILDING	% VOL	80.	Ţ	2 V V	ЦŅ	×.04	g	4.2	g	22.0	20.2	78.7	78.8
		8	ŀ	1									
WUULE		8	- V	~	2	× 8	g	4	ĝ	222	203	78.5	78.7
LAB		ця	aw	l		L		ľ	-	ļ			
			Ē	5	ž	Ц	Σ	цц	μ	뷢	L M	BE	ЧM
							T				T		T
BE - BOEING ENVIRON	MENTAL	LABOF	ATORY								1		
MF - MAIERIALS AND F *RESULTS FOR CH A AN		S LABO	NED BV	ү Итне м						2 (ı	
IN SOME CASES THE I	NUMBER	I WAS I	RUNCA	TED AN	NOH UN		CIVEN DFF.			% O I 0	VULUM	ц	

5-8348-0-220

					SAMPI	LES TA	KEN JU	LY 31, ⁻	686				
SAMPLE POINT	UNITS	ပိ	2	Ŭ	0	ъ С	14	Ŧ	2		2	Z	2
-													
TCSS													
PORT #6		.06	۲.۲	< .2		< .04	.0025	< 4	QN	22.1	20.5	78.1	78.5
PORT #7	% VOL	.06	<.1 -	< .2	ND	< .04	.0016	< .4	QN	22.2	20.4	78.7	78.5
							-						
LAB		BE	МР	BE	МΡ	BE	МΡ	BE	MP	BE	МΡ	BE	ΜP
				3	SAMPI	LES TA	KEN JU	LY 31, ⁻	1989				
SAMPLE POINT	UNITS	ပိ	2	Ŭ	0	ς	14	T	2	0	2	Z	2
BOSCH													
BLEED GAS	% VOL	1.5	6.	< .2	ND	40.9	42.1	13.8	11.0	6.9	5.4	37.1	39.6
TCCS													
PORT #6	% VOL	60.	< .1	.2	.01716	.17	45439	4 .	QN	22.4	21.1	78.2	77.4
PORT #7	% VOL	.18	۰.	< .2	.00261	< .04	.09561	< .4	DN	22.2	19.7	78.2	79.2
LAB		BE	МΡ	BE	мР*	BE	MP*	BE	МΡ	BE	МΡ	BE	МР
BE - BOEING ENVIRC MP - MATERIALS ANE *RESULTS FOR CH4 /	DINMENT DIPROCE AND CO	AL LAB ESS LAE DETER	ORATO SORATO MINED	RY)RY BY THE	E MP LA	B WERI		ERTED	FROM	opb TO	% AOFL	JME.	

Table 8. Laboratory comparison (continued)

Table 9. Molecular sieve gas analyses.

			SAI	MPLED	AUGUS	T 3, 19	68				SAMPL	ED AU	GUST 4,	1989	
TIME SAMPLE TAKEN	14:05	14:06	14:55	14:56	14:58	14:59	15:05	15:12	16:00	13:20	13:25	13:45	13:45	13:55	13:58
ANALYTES UNITS*	PRODUCT COs	PRODUCT CQ	INLET	INLET	OUTLET	ουπετ	ouner	INLET	PRODUCT CO,	PRODUCT CO1	PRODUCT CO,	INLET	INLET	OUTLET	OUTLET
CO ₂ % VOL	71.7	89.6	1.	.41	۲.	.15			.37	83.6		4.		.16	
H ₂ % VOL	QN	< .4	ND	<. <	ÓN	4. >			<.4	<u><</u> 4		<.4		۸. 4	
N ₂ % VOL	22.5	11.5	77.9	78.8	77.8	78.8				29.4		77.5		77.5	
O ₂ % VOL	4.8	3.1	20.9	22.1	21.1	22.2				4.6		22.5		22.5	
H ₂ O VAPOR % VOL							1.9	.2	.99		1.6		1.0		.19
CH4 % VOL	.0014	< .04	.0031	< .04	.0035	< .04			<.04	<.04		<.04		<.04	
CO % VOL	.000	< .2	QN	0	Q	ڊم ا				< .2		< .2		< .2	
TRACE ORGANICS															
FREON 113 PPM	2.1		1.0		8										
ACETONE	7.		9.		9.										
2-PROPANOL PPm	22.2		24.1	-	4.										
METHYLENE CHLORIDE PPM	QN		Q		5										
TOLUENE PPM	DN		4		-										
TRANS-1.2				·											
DIMETHYLCYCLOHEXANE ppm	.5		ND		Q										
1-BUTANOL ppm	۲.		QN		Q										
	9	u		U O	QW	DL	DC	DC	Ŭ	DC	סנ	DC	u a	L L	ua
		3		2		3	3	3	3			2 L	L L	3	3
* RESULTS FOR CH ₂ AND CO DETERMIN		ΥTH	E MP	LAB V	VERE	CON	VERT	ED FI	NOF I	pb T(N % (OLUN	E.	SOM	111
CASES THE NUMBER WAS TRUNCATED	AND (ROU	NDED	OFF.											
BE – BOEING ENVIRONMENTAL LAB MP – MATERIALS AND PROCESS LAB ND – NONE DETECTED															
														5-8116	0-205
(continued															
------------	--														
analyses															
gas															
sieve															
Molecular															
Table 9.															

 $\overline{}$

		s	AMPLED	AUGUS	r 7, 1989				SAMP	LED AU	GUST 8,	1989	
TIME OF DAY	11:42	11:45	12:00	12:04	12:05	12:15	15:40	16:00	16:02	16:15	16:27	16:45	16:49
ANALYTES UNITS	PRODUCT	PRODUCT	INLET	INLET	OUTLET	OUTLET	PRODUCT 00,	MLET	OUTLET	INLET	OUTLET		PRODUCT CO,
CO3 % VOL	6.77		3.72		.25		77.3	.37	.12			86.2	
H, VOL	<.4		<.4		<.4		1.0	<.4	<.4			3.6	
N ₂ % VOL	22.5		74.6		77.4		9.8	77.9	78.0			5.6	
0, % VOL	6.6		21.7		22.5		2.3	22.4	22.5			1.7	T
H ₅ O VAPOR % VOL		.96		1.4		99.				.	.54		3.2
CH. % VOL	<.04		<.04		<.04		3.9	< .04	<.04			5.55	
CO % VOL	بہ ۷		< 2		< 2		5.9	< 2 2	< 2			<. <	
LAB	Ш	띪	BE	BE	BE	BE	BE	BE	BE	BE	BE	BE	BE
												-	
										_			
BF - BOFING ENVIRONMENTAL LAB	-												
												<u></u>	
												5-8	117-0-205

yses.
anal
gas
ysis
ectrol
ele
feed
Static
10.
Table

		SAM AUGUS	PLED T 3, 1989				SAMF AUGUST	LED 4, 1989	
TIME SAMPLE TAKEN	12:35	12:37	13:17	13:15	13:16	15:05	15:06	15:30	15:45
ANALYTES* UNITS	O ₂ LINE		H ₂ LINE	H ₂ LINE"	H ₂ LINE	Q, LINE	0, LINE	H ₂ LINE	H ₂ LINE"
						、			
CO2 % VOL	.2			9.	< .04				× 04
H ₂ % VOL	QN			69.0	81.2				78.7
N2 % VOL	16.4	15.6		23.0	33.6	25.6			41.0
02 % VOL	82.4	85.7		6.4	9.5	75.6			10 9
H ₂ O VAPOR % VOL			4.			2	54	42	2
CH4 % VOL	QN			QN				!	 04
CO % VOL	QN			QN	<. >				~
									!
TRACE ORGANICS									
ACETONE ppm	.2			QN					
								Γ	
									T
						T			
LAB	MP	BE	BE	MP	BF	BF	L L	BE	u
							3	1	
									T
									T
*THE BE LAB COULD NOT DETERMINE CO2, C	O, AND H2	Z							T
THE O ₂ LINE BECAUSE OF INSTRUMENT LIN	MITATIONS.								
**SEE SECTION 4.6 FOR EXPLANATION OF RE	SULTS						T		
BE – BOEING ENVIRONMENTAL LAB MP – MATERIALS AND PROCESS LAB ND – NONE DETECTED									
								5-81	21-0-205

Table 10. Static feed electrolysis gas analysis (continued)

			SAMF AUGUST	16D 7, 1989		AU	SAMPLED GUST 8, 198	۰ ۵
THUR CANNY E TAKEN		10:49	10:50	11:15	11:17	14:25	15:30	15:35
	0	, LINE	O ₂ LINE	H ² LINE	H ₂ LINE	O ₂ LINE	H ₂ LINE	H ₂ LINE
ANALYIES UNITS								
101 %				.02			< .04	
UU2 % VOI				72.4			90.2	
		27.4		60.6			1.2	
N2 / 00L		73.4		16.5			2	
			.94		.54	.75		.41
				< .04			< .04	
CH4 % VOL				< <			< .2	
		T					i	
		BE	BE	BE	BE	BE	BE	BE
LAB								
	CO AND Ha							
THE BE LAB COULD NOT DETERMINE VO	NT I IMITATIONS							
* SEE SECTION 1 6 FOR FYPI ANATION OF	F RESULTS.							
BE - BOEING ENVIRONMENTAL LAB			. <u></u>					
								5-8122-0-20

analyses.
gas
Bosch
П.
Table

	SAMPLED 8/2/89	SAMI	PLED F 3, 1989			SAMF AUGUST	1 1989 4, 1989		
TIME SAMPLE TAKEN	NR	11:33	11:32	10:00	10:45	11:45	12:15	13:50	15:50
ANALYTES UNITS	PURGE	REACTOR INLET	REACTOR INLET	BOSCH	BOSCH	BOSCH BLEED	BOSCH BLEED	REACTOR INLET	REACTOR INLET
CO ₂ % VOL	95.1	3.5	.7			6	1.5	5.2	Ī
H ₂ % VOL	4. >	23.1	14.4			11.0	13.8	20.3	
N ₂ % VOL	6.7	29.0	46.9			39.6	37.1	35.5	
02 % VOL	1.8	3.4	4.8			54	69	5.4	
H ₂ O VAPOR % VOL				.85		5	2.0	t	17
CH4 % VOL	< .04	33.3	32.1			42.1	40.9	32.1	
CO % VOL	< .2	5.9	QN			Q	< 2	98	
AMMONIA ppm					3.6				
TRACE ORGANICS ppm			DN			QN			
LAB	BE	BE	МР	BE	BE	ΔÞ	BE	BE	BF
									;
									Γ
BE – BOEING ENVIRONMENTAL LAB MP – MATERIALS AND PROCESS LAB ND – NONE DETECTED									
								5-81	18-0-205

(continued)
analyses
gas
Bosch
11.
Table

		SAMPLE	ED AUGUST	7, 1989		<i>1</i> S	MPLED AUC	BUST 8, 1989	
TIME SAMPLE TAKEN	12:30	12:49	13:47	15:28	15:29	13:10	13:36	17:11	17:15
ANALYTES UNITS	BLEED	BOSCH BLEED	BLEED	REACTOR INLET	REACTOR	BOSCH BLEED	BLEED	REACTOR INLET	REACTOR INLET
CO ₂ % VOL	2.0			2.4		3.1		96.7	
H ₂ % VOL	14.8			21.7		18.2		19.2	
N2 % VOL	33.6			21.6		16.3		11.7	
0, % VOL	7.2			2.4		6.		1.0	
H ₂ O VAPOR % VOL			.35		1.5				2.1
CH4 % VOL	46.7			46.2		53.8		25.7	
CO % VOL	3.8			5.9		6.6		ġ	
AMMONIA ppm		1.3					.7		
LAB	BE	BE	BE	BE	B	BE	BE	BE	BE
BE - BOEING ENVIRONMENTAL LAB									
								2 C	-8119-0-205

			SAMPLED AUC	GUST 4, 1989		SAMPLED AUGUST 6 1989
TIME SAMPLE TAKEN		02:23 - 14:30	14:30 - 19:00	19:55	21:06	21:31
ANALYTES	UNITS	BOSCH WATER	BOSCH WATER	BOSCH WATER	BOSCH WATER	BOSCH WATER
pH				7.2		
TOTAL SOLIDS	ррт				< 10	
TOTAL DISSOLVED SOLIDS	bpm				< 10	
TOTAL SUSPENDED SOLIDS	bom				< 10	
TURBIDITY	NTU			9.6		
DISSOLVED O2	ррт			2.02		
RABILIM	Bom	< 01				
CADMILIM	E C C C C C C C C C C C C C C C C C C C	< 03				
CALCIUM	DOM	15				
CHROMIUM	ppm	< .06				
IRON	Dom	< .05				
MAGNESIUM	maa	< .01				
MANGANESE	maa	< .01				
MOLYBOENUM	moa	60. >				
NICKEL	mon	< .11				
SILVER	mod	< .14				
ZINC	mqq	< .02				
	•					
AMMONIA	mqq					92.60
CHLORIDE	ppm					.10
FLORIDE	moa					.27
NITRATE	moo					<.120
PHOSPHATE	maa					< .190
POTASSIUM	maa					1.03
SULFATE	ppm					< .190
01100000000000			000 01			
HEIEHOIROPHS	CFU/100ml		10,000			
GRAM NEGATIVE	CFU/100ml		7,500			
GRAM POSITIVE	CFU/100ml		100			
YEAST AND MOLD	CFU/100ml		< 100			
LAB		BE	BE	BE	BE	BE
BE - BOEING ENVIRONMENTAL LA CFU - COLONY FORMING UNITS	ABORATORY					
						5-8123-0-205

Table 12. Bosch CO₂ reduction water analyses.

analyses.
TCCS
13.
Table

			1 V 31 1080			SA	MPLED AU	GUST 3, 196	6	
	ō									
TIME OF SAMPI F TAKEN	11:60	09:15	09:18	09:19	09:35	09:45	11:02	11:02	11:05	11:05
ANALYTES UNITS*	PORT 6	PORT 6	PORT 7	PORT 7	PORT 6	PORT 7	PORT 6	PORT 6	PORT 7	PORT 7
п% V0I	4. >	QN	4. >	QN	QN	QN	QN	< .4	QN	۸ 4
n2 % VOL	< 04	00250	< .04	.00162	.003021	QN		< .04	.00892	.04
CH4 % VOL	< 2	QN	< .2	QN	QN	QN		< .2	QN	<.2
CO % VOI	90.	×.1	.06	×.1			۲. ۲.	60 [.]	<u>د.</u> 1	1-
VO2 % VOI	78.1	78.5	78.7	78.5			78.2	78.7	77.6	77.7
N2 % VOL	22.1	20.5	22.2	20.4			20.7	22.4	21.4	22.3
TRACE ORGANICS									!	
EREON 113 DDM		.2		e.					QN	
ACETONE				4.			Q		بہ	
2-PROPANOL PPM		QN		с.			g		Q	
TRANS-1.2									!	
DIMETHYLCYCLOHEXANEppm		QN					g			
TOLLIENE		QN		-			g			
		QN							g	
O-XVI FNE ppm		DN					Q		Q	
TRICHLOROETHYLENE ppm		QN		Q			₽		2	
LAB	BE	AP	BE	MΡ	dΜ	Δb	₹	BE	dМ	HH HH
								_		
					_					
*METHANE RESULTS REPORTED BY TH		B							_	
WERE CONVERTED FROM PPM TO % \	VOLUME I									
MP - MAIERIALS AND FROCESS LAD				<u> </u>						
NU - NONE DETENTED										5-8113-0-20

(continued)
analyses
TCCS
13.
Table

			S.A.	MPLED AU	GUST 4, 19	68		
TIME SAMPLE TAKEN	06:57	06:59	12:32	12:32	12:34	12:36	16:32	16:42
ANALYTES UNITS*	PORT 6	PORT 7	PORT 6	PORT 6	PORT 7	PORT 7	PORT 6	PORT 7
H ₂ % VOL	< .4	4 . >	QN	<.4	Q	4. ^	QN	GN
CH 4 % VOL	.13	.05	.45439	.17	09561	× 04	320413	069459
00 % VOL	< .2	< .2	.01716	Ņ	.00261	. 2. ~	014712	804000
CU2 % VOL	.08	.18	×.	60	-	18	4	075-760
N 2 % VOL	78.1	78.4	77.4	78.2	2.67	78.2		
02 % VOL	22.2	22.2	21.1	22.4	19.7	000		
I RACE ORGANICS								
FREON 113 ppm			0 0		80			
ACETONE ppm			4					T
2-PROPANOL ppm			G					
TRANS-1,2							+	
DIMETHYLCYCLOHEXANE ppm			S					T
TOLUENE ppm			~					
BUTYL ACETATE ppm			. G					T
O-XYLENE ppm			g					
TRICHLOROETHYLENE ppm			L LC					T
LAB	BE	BF	dW	Ц			1	
				-		H	ž.	à
MEITANE AND CAHBON MONOXIDE REPORTED BY THE								
MP LAB WERE CONVERTED FROM PPM TO % VOLUME.								
ALL NUMBERS WERE RETAINED.								T
BE – BOEING ENVIRONMENTAL LAB						╋		T
MP – MATERIALS AND PROCESS LAB						\uparrow		T
ND – NONE DETECTED						+	+-	
			1				5-81	14-0-205

	SAMP	LED	SAMP	LED	SAMF	LED	SAMP	LED	SAMP	ED
	AUGUSI	5, 1989	AUGUSI	6, 1989	AUGUSI	/ 1989	AUGUSI	8, 1989	AUGUSI	6061 '01
TIME SAMPLE TAKEN	08:18	08:26	08:15	08:28	15:24	15:25	17:34	17:37	10:57	11:01
ANALYTES UNITS*	PORT 6	PORT 7	PORT 6	PORT 7	PORT 6	PORT 7	PORT 6	PORT 7	PORT 6	PORT 7
H ₂ % VOL	<.3	QN	QN	QN	< .4	< .4	4.>	< .4	QN	Q
CH A % VOL	.269305	.083523	019921	.014449	.16	.07	< .04	< .04	.273594	047010
CO % VOL	013546	.002318	002457	.001343	< .2	< .2	< .2	<.2	.014135	.002644
CO, % VOL					60.	.23	.08	60 [.]		
N 5 % VOL					77.2	77.6	77.9	7.77		
Cos % VOL					22.4	22.3	22.5	22.5		
LAB	МР	МР	MP	MP	BE	BE	BE	BE	МР	МΡ
METHANE AND CARBON MONOXIDE REPAIRS OF CARES	ESULTS	REPORT	ED BY							
THE MP LAB WERE CONVERTED FROM	ppm TO	% VOLU	ME.							
BE – BOEING AEROSPACE LAB MP – MATERIALS AND PROCESS LAB ND – NONF DFTECTED							<u></u>			
									5	8115-0-205

Table 13. TCCS analyses (continued)

samples.
gas
Environmental
1 4.
Table

			SAMP AUGUST	LED 3, 1989		SAMF AUGUST	oLED 7, 1989	SAMP AUGUST	LED 8, 1989
TIME SAMPLE TAKEN		15:50	15:51	16:10	16:10	14:03	14:18	13:15	13:30
ANALYTES UNIT	- S	BUILDING ATMOS.	BUILDING ATMOS.	MODULE ATMOS.	Module Atmos.	BUILDING ATMOS.	Module Atmos.	BUILDING ATMOS.	MODULE ATMOS.
N ₂ % VO	٦٢	78.7	78.7	78.5	78.7	77.0	77.4	77.0	76.9
O2 % VO	٦L	22.0	20.2	22.2	20.3	22.5	22.5	22.3	22.4
CO2 % VC	٦L	.08	<.1	<.08	<.1	.04	.13	.18	.05
H ₂ % VO	٦٢	<.4	QN	<.4	ND	<.4	<.4	<.4	<.4
CH 4 % VO	٦٢	<.04	ND	<.04	ND	<.04	<.04	<.04	<.04
CO % VO	٦٢	<.2	ND	<.2	QN	<.2	<.2	<. <.	<.2
TRACE ORGANICS									
FREON 113 ppm			6.		7.				
ACETONE	-		.3		2				
2-PROPANOL	_		.5		4.				
LAB		BE	МР	BE	ЧM	BE	BE	BE	BE
BE – BOEING ENVIRONMENTAL LAB MP – MATERIALS AND PROCESS LAE ND – NONE DETECTED									

5-8125-0-205

Table 15. Temperature and humidity control analyses.

					ď	AMPI FD	
	AU	SAMPLED IGUST 3, 191	39		AUG	UST 4, 1989	
	14:35 14:40	14:50	15:10 15	20 13:3	0 14:0	0 14:40	14:47
LIME SAMPLE LANEN			1HC		OH1 OH1		
ANALYTES UNITS			CONDENSATE			avie	
BNA's			00		20	<u>ш</u>	
PHENOL ppp			3				
OTHER: (ALL UNITS ppb)			20 F		200) E	
2 - BUTOXY ETHANOL			1				
OCTAMETHYL -			_		4	Ш	
CYCLOTETRASILOXANE						u U	
BENZYL ALCOHOL			L		- - -		
2 - PHENYL - 2 - PROPANOL			30 E				
					₹		
			180 E		4	Ш	
					4)E	
					4		
					8(0 E	
UNKNOWN ALCUHUL			170 E		4	DEL	
(2 - ETHOXYETHOXY ETHANUL)			40 E		16	0 E	
UNKNOWN ALKYL CARBOXYLIC ACIU					4	0 E	
UNKNOWN HYDROCABBON					 		
			RF TR			Щ	
LAB							
BE – BOEING ENVIRONMENTAL LAB BNA'S – BASE NEUTRAL EXTRACTABLES F – FSTIMATE ONLY – ESTIMATES ARE BASED	ON THE ION CL	IRRENT (DF AN INTER	RNAL STA	NDARD.		
							5-8126-0-2(

73

s (continued)
analyse
control
humidity
and
Temperature
15.
Table

					SAMF AUGUST	PLED 8, 1989			
TIME SAMPLE TAKEN		07:45	07:50	08:00	08:05	12:50	14:13	14:19	16:10
ANALYTES	VITS	THC	THC	THC	THC	THC CONDENSATE	THC	THC	THC
РН				6.8			6.5		
CONDUCTIVITY	SOH MU			58.8			54.2		
TOTAL PHENOLS	bpb	.17				.16			T
VOLATILE ORGANICS	ppb								
ACETONE	ppb				157				1000
TOLUENE	ppb				TR				
ETHYL BENZENE	ppb		SEE		ŦR			SEE	
			NEXT					NEXT	
OTHER ¹			PAGE					PAGE	
ETHANOL	bpb				100 E				20 E
2 - PROPANOL	ppb				100 E				
2 - ETHYL - 1 - HEXANOL	ррb				50 E				20 E
LAB		BE		BE	BE	BE	BE		ВF
1					i			T	;
BE - BOEING ENVIRONMENTAL E - ESTIMATE ONLY - ESTIMATI TR - TRACE	LAB ES ARE BASED ON THE I	ON CURF	ENT OF	AN INTI	ERNAL 9	STANDAF	- 		

5-8128-0-205

ANALYTE	REFERENCE	METHOD TYPE*	DETN. LMTS.
N ₂	IN HOUSE	MS	0.5%
O ₂		MS	0.5%
CO ₂		MS	0.5%
H ₂		MS	0.5%
CH₄	¥	MS-(GC/CR)	0.5%(0.5-1 ppm)
ÇO		GC	0.5%/0.5-1 ppm
TRACE ORGANICS			RANGE
FREON 113	IN HOUSE	GC/FID	0.2 – 1 ppm
METHYLENE CHLORIDE		GC/FID	
TRICHLOROETHYLENE		GC/FID	
ACETONE		GC/FID	
TRANS 1, 2, DIMETHYLCYCLOHEXAN		GC/FID	. ↓
TOLUENE		GC/FID	
O-XYLENE		GC/FID	
BUTYL ACETATE		GC/FID	
2-PROPANOL		GC/FID	
1-BUTANOL		GC/FID	
		GC/FID	

Table 16. MP analytical methods/gas samples.

ACRONYMS:

MS – MASS SPECTROSCOPY GC/CR – GAS CHROMATOGRAPHY CATALYTIC REACTOR DETECTOR GC/FID – GAS CHROMATOGRAPHY FLAME IONIZATION DETECTOR

ANALYTE	REFERENCE	METHOD TYPE	DETN. LMTS.
ORGANICS			
No	IN HOUSE	GC/TCD	.2% (2000 ppm)
02	1		.2% (2000 ppm)
CO ₂	♥	¥	.2% (2000 ppm)
- H2			.4% (4000 ppm)
CH₄			.04% (400 ppm)
H ₂ O VAPOR		GRAVAMETRIC	(22–88) ppm ²

Table 17. BE analytical methods/gas samples.

1. GC/TCD – GAS CHROMATRGRAPHY WITH THERMAL CONDUCTIVITY DETECTOR

2. THE RANGE GIVEN REPRESENTS THE DETECTION LIMITS FOR 14 TO 57 LITERS OF GAS SAMPLED.

manpower, lack of equipment, or lack of analytical method and expertise. The following is a list of the additional parameters requested which the BE laboratory could not determine.

Parameter	Sample Description
Alkalinity (carbonates)	Bosch Product Water
Formic Acid	Bosch Product Water
Formaldehyde	Bosch Product Water
Total Phenols	Bosch Product Water
Total Keljdal Nitrogen	Bosch Product Water
Total Organic Carbon (TOC)	Bosch Product Water
Total Inorganic Carbon (TIC)	Bosch Product Water
Total Carbon (TC)	Bosch Product Water
NO, NO_2	Bosch Bleed
TOC, TIC, TC, CO_2 , CO , H_2	Humidity Condensate SFE O ₂ Line
Trace Organics	Bosch, TCCS, MS, module and
C	building gas samples

The organic volatiles and base/neutral extractables reported by the BE laboratory for humidity condensate (Table 12) were submitted for informational purposes only. The compounds listed are only those compounds which were found to be greater than the detection limit. These compounds, determined by gas chromatography/mass spectrometer (GC/MS) detection, were acquired by a new chemist in training and the GC/MS was reported to be improperly configured. The compounds reported in Table 12 should be considered as minimal values only. Other organic compounds not listed in this report were reported as below the method detection limit and could have possibly been present if holding time and GC/MS configuration had been in compliance.

ANALYTE	REFER		METHOD TYPE	DETN. LMTS.
LI I SIMARS	FP 4	150 4		1-14 pH UNITS
рH	EPA	100.1		1 PT/CO
COLOR	EPA	110.2		0.5 NTU
TURBIDITY	EPA	180.1		0.1 umbos/cm
CONDUCTIVITY	EPA	120.1		
DISSOLVED O	SM	10030	ELECTROMETRIC	10 0004
TOTAL DIS. SOLIDS	EPA	160.2	GRAVIMETRIC	10 ppm 10 ppm4
TOTAL SOLIDS	EPA	160.3	GRAVIMETRIC	10 ppm 10 ppm
TOTAL SUSP. SOLIDS	EPA	160.1	GRAVIMETRIC	to ppm.
ELEMENTS				
BARIUM	EPA	200.7	ICP	0.002 pm
CADMILIM	EPA	200.7	ICP	0.010 pm
CALCIUM	EPA	200.7	ICP	0.001 pm
CHROMIUM	EPA	200.7	ICP	0.010 pm
IRON	EPA	200.7	ICP	0.020 pm
MAGNESILIM	EPA	200.7	ICP	0.005 pm
MAGANESE	EPA	200.7	ICP	0.001 pm
MOLYRDENIIM	EPA	200.7	ICP	0.020 pm
SILVER	EPA	200.7	ICP	0.030 pm
ZINC	EPA	200.7	ICP	0.010 pm
IONS				
	ED4	300 7	IC	0.090 pm
		300.7	IC	0.075 pm
CHLORIDE		300.0	IC	0.05 pm
FLUORIDE	CPA	0.000	IC	0.25 pm
NITRATE	EPA	300.0	IC	0.38 pm
PHOSPHATE	EPA	300.0	IC	0.050 pm
POTASSIUM		300.7		0.38 pm
SULFATE	EPA	300.0		

Table 18. BE analytical methods/water samples.

١

ANALYTE	REFERENCE ²	METHOD TYPE ¹	DETN. LMTS.
ORGANICS			
VOLATILES (39 COMPOUNDS)	EPA 624	GC/MS	(5-150) ppb ³
BASE NEUTRAL ACID EXTRACTABLES (51 COMPOUNDS)	EPA 625	GC/MS	20 ppb
TOTAL PHENOLS	НАСН	SPECTROMETRIC	20 ррb
MICROBIOLOGICALS			
HETEROTROPHS BY PCA	SM 16th ed	MEMBRANE FILTRATION	0 CFU/100 ml ⁴
GRAM NEGATIVE BY MAC	SM 16th ed	MEMBRANCE FILTRATION	0 CFU/100 ml ⁴
GRAM POSITION BY (PEA)	SM 16th ed	MEMBRANE FILTRATION	0 CFU/100 ml ⁴
YEAST AND MOLD	SM 16th ed	MEMBRANE FILTRATION	0 CFU/100 ml ⁴

Table 18. BE analytical methods/water samples (continued)

- 1. IC ION CHROMATOGRAPHY ICP – INDUCTIVELY COUPLED PLASMA EMMISION SPECTROSCOPY GC/MS – GAS CHROMATOGRAPHY WITH MASS SPECTROMETER DETECTOR
- 2. EPA ENVIRONMENTAL PROTECTION AGENCY SM – STANDARD METHODS
- 3. THE DETECTION LIMITS DETERMINED FOR MOST OF THE VOLATILE ORGANICS RANGED FROM 5 TO 150 ppb. TO SEE ACTUAL DETECTION LIMITS SEE APPENDIX.
- 4. DETECTION LIMITS ARE DEPENDENT ON SAMPLE VOLUME.

4.5 Quality Control

Quality control (QC) is a program which continually monitors the reliability (accuracy and precision) of results reported and signals when an analysis is out of control. Out of control indicates that a problem has occurred in the laboratory relative to instrument operation, analytical procedure, analyst error etc., which will yield incorrect or erroneous results. Implementing QC in the laboratory is time consuming and expensive, but is necessary to insure reliable results. The following is a general discussion of the QC data submitted by the BE laboratory for air and water analyses. The MP laboratory did not submit QC data.

For gas analyses, the only QC submitted by the BE laboratory was calibration verification control charts. Once instrument calibration was completed, the calibration was verified using purchased gas standards which were either from a different lot number or different manufacture from the standards initially used to calibrate the instrument. The concentrations of the calibration verification standards were mid range on the calibration curve. Calibration was verified and considered acceptable if the percent recovery for the calibration verification standards were within 90 to 110 percent of the known concentration. The following table gives the low and high percent recoveries of the standards used to verify calibration. The numbers given are estimates taken from the calibration verification control charts. The control charts indicate that the instrument used to evaluate gas samples was correctly calibrated. The calibration verification control charts do not indicate accuracy or precision for the method used, but they do indicate proper instrument calibration. After instrument calibration and calibration verification, the calibration was checked every eight hours using a check standard to determine if instrument drift was occurring. If the check standard varied greater than ± 10 percent from the known value, the instrument had to be recalibrated and calibration verified before gas samples could be analyzed.

	Calibration Verification
Gas	(Low-High) % Recovery
CO_{2}	100 - 106
CO 2	97 - 103
H_2	97 - 105
CH ₄	98 - 104
N_2	98 - 99
O_2	97 – 111

The BE laboratory submitted calibration verification, accuracy, and precision control charts for analytes (metals, ions, total phenols, and TOC) determined in water samples. In general, calibration verification control charts indicated that instrumentation was properly calibrated. All recoveries were within ± 10 percent except verification standards determined for cadmium and zinc which demonstrated one out of control condition each. This indicated that instrument recalibration was necessary before further water analyses could be initiated.

The accuracy control charts plot the percent recoveries of matrix spike determinations. These charts are used to indicate matrix interferences and out of control conditions. An out of control condition for accuracy exists when the percent recovery for any one matrix spike exceeds the upper and lower control limits (± 3 standard deviation) from the mean percent recovery. The accuracy control charts indicate that the BE laboratory systems were never out of control. As an indication of accuracy, the following table lists the accuracy range in percent recovery for ± 2 standard deviation from the mean value. The BE laboratory did not identify which matrix spikes were run with the water samples tested.

	Accuracy
Analyte	% Recovery
Barium	88.5 - 117.4
Cadmium	75.2 - 108.4
Calcium	88.3 - 126.9
Chromium	65.0 - 101.8
Copper	82.6 - 109.2
Iron	74.3 - 116.3
Magnesium	90.3 - 114.9
Manganese	88.9 - 110.2
Molybdenum	66.5 - 97.5
Nickel	79.9 - 106.1
Potassium	79.8 - 129.4
Silver	66.8 - 114.0
Sodium	56.4 - 142.6
Zinc	84.2 - 118.2
Ammonia	51.6 - 111.9
Total Phenols	46.1 - 145.9

The concentration of matrix spikes determined should be considered when interpreting accuracy data. For example, if a method of analysis detected 7.5 ppm out of a known 10 ppm standard, 75 percent of the true value is recovered with a difference of only 2.5 ppm. If 75 ppm is detected out of a known 100 ppm standard, 75 percent of the true value is again recovered, but the difference is 25 ppm, a much larger difference. The percent recovery of 75 percent is the same for both determinations, but the actual differences between the determined and known values vary greatly. As analyte concentrations approach the detection limit, the relative uncertainty of the result increases. Therefore, uncertainty near the detection limit should be considered when evaluating data.

Precision for matrix spike duplicates was determined and expressed as RPD. This is a measure of the mutual agreement between two samples assumed to have the same concentration of analyte spiked. RPD is defined in the following equation:

$$RPD = |X1 - X2|/X1 + X2 * 200$$

where:

X1 = First duplicate result

X2 = Second duplicate result

Precision control charts were plotted against the upper control limit (+3 standard deviation) to indicate out of control conditions. These charts indicated that the BE laboratory was always in control. Precision for each analyte is listed in the following table. The range given represents +2 standard deviation from the mean RPD.

	Precision
Analyte	RPD
Deriver	5 0
Barium	5.0
Calcium	8.2
Cadmium	7.8
Chromium	12.1
Copper	11.1
Iron	8.0
Magnesiuum	5.8
Manganese	7.0
Molybdenum	11.6
Nickel	11.3
Silver	10.6
Zinc	15.9
TOC	19.2

4.6 Discussion of Results

Gas results from the SFE H_2 line samples indicated possible sample contamination either during or after sample collection. Oxygen and nitrogen concentrations were found in a 1 to 4 ratio in the H_2 line samples which is the same ratio found in air. Because the SFE subsystem does not produce nitrogen or oxygen in the hydrogen product, contamination is suspected. Hydrogen may also be diffusing through the sample gas bag therefore increasing the concentrations of the other gases detected. Although hydrogen leakage could be occurring, this would not account for the oxygen to nitrogen ratios of 1 to 4. In addition, nitrogen was also detected in the SFE O₂ line samples in significant concentrations. Because the SFE subsystem does not produce nitrogen in the oxygen product, contamination is again suspected.

In two separate cases, gas sampling bags deflated to the extent that either the entire sample was lost or a portion of the analysis could not be completed. An SFE O_2 gas bag deflated entirely prior to analysis. The cause of this problem could be the result of a defective bag or not fully closing the inlet valve to the sample bag.

Continued improvement in analytical methods and detection techniques is needed in many areas. Measuring water vapor by using silica gel is a technique which the BE laboratory used for the first time during the SIT. The concentration of water vapor determined in the product CO_2 line of the 4BMS subsystem was higher than expected. Because the product CO_2 gas is passed through a desiccant prior to exiting the subsystem, water vapor should not be present.

Because of limitations associated with the flame ionization detector (FID) used to detect gases, low concentrations of hydrogen could not be determined in high concentrations of oxygen. The SFE O_2 line samples could not be analyzed for low concentrations of hydrogen. In order to detect low concentrations of hydrogen, large volumes of the gas sample would have to be injected on the gas chromatograph which could damage the FID.

Matrix effects or analyte loss could account for the low mean percent recovery of ammonia, chromium, and molybdenum in Bosch water matrix spikes. Because of the volatility of ammonia, quick sample turn around time is required to prevent sample loss. Matrix effects may account for the low chromium and molybdenum spike recoveries, but these effects are presently unknown.

4.7 Recommendations/Lessons Learned

The gas sampling techniques used for the SIT should be verified to eliminate concerns of sample bag leakage, diffusion, and the introduction of contaminants (air) during the sample process. In addition, gas leakage and diffusion need to be studied as a function of gas type and storage time prior to analysis.

The gravimetric method used to measure water vapor in a gas should be verified so that accuracy and precision can be determined. Currently, the validity of this method is questionable until its reliability can be determined.

An alternate analytical method of detection needs to be defined for analyzing low concentrations of hydrogen (ppm range) in high concentrations of oxygen. Because of instrument limitations, the BE laboratory could not analyze for hydrogen in the SFE O_2 stream samples taken during the SIT.

In general, analytical laboratory expertise, instrumentation, and manpower is needed to further accomplish the goals of future integrated subsystem tests. All new analytical methods and techniques should be verified prior to actual sample analyses so that accuracy and precision can be defined.

5.0 CONCLUSIONS/LESSONS LEARNED

There were several important lessons learned and conclusions drawn from the phase III SIT. First, the integration of the Bosch CO_2 reduction subsystem in the air revitalization system requires careful consideration of sensitive operational interfaces. In particular, the CO_2 supplied from the

4BMS must be controlled to a relatively constant supply pressure and flow rate. The CO_2 collected by the 4BMS should be relatively pure (98 percent or better) if the required operational interfaces with the 4BMS and TCCS are to be maintained.

Second, perhaps more attention should be paid to the deterioration of each subsystem as a function of time. Leakage problems seriously affected the entire test (see reference 5 for a detailed discussion). The 4BMS used in the phase III SIT was four years old. Minor leakage problems had occurred during phase II testing, however they can become a major factor as subsystems age.

Finally, several instruments, particularly flowmeters, gave unexpected results which were believed to have been erroneous. Most of the instrumentation used was calibrated for a pure gas and most of the gases produced by the subsystems are not pure, therfore inaccurate readings are likely caused by calibration errors. For example, the H_2 flowmeter for the SFE indicated a conflicting amount of H_2 was being produced for the amount of water being used by the subsystem. The unexpected reading from the flowrate could have been caused by a slight amount of water vapor mixed with the H_2 in the line.

The next integrated tests of these same air revitalization subsystems will be the metabolic control test, the extended metabolic control test, and the transient control test. The lessons learned and conclusions drawn from the simplified integrated test have given some insight for better integrated operation during these future tests.

REFERENCES

- "Space Station Freedom Environmental Control and Life Support System (ECLSS) Development Test Program Summary." Marshall Space Flight Center, Structures and Dynamics Laboratory Memo 112-89, July 25, 1989.
- 2. "Space Station ECLSS Simplified Integration Test Final Report, Phase II." NASA TM-100363, March 1989.
- 3. "Space Station CMIF Extended Duration Metabolic Control Test Final Report." NASA TM-100362, March 1989.
- 4. "Phase III CMIF System/Facility Design Requirements." Marshall Space Flight Center, Structures and Dynamics Laboratory Memo 120-88, October 3, 1988.
- 5. "Minutes of Meeting on MSFC Phase III ECLSS Air Recovery Simplified Integration Test, June 5, 1989." Marshall Space Flight Center, Structures and Dynamics Laboratory Memo 87-89, June 8, 1989.
- 6. Space Station Freedom, Phase III Air Revitalization System Simplified Integrated Test Report." Marshall Space Flight Center Test Laboratory, November 1989.
- 7. "Design, Fabrication, and Test of a Trace Contaminant Control System LMSC-D462467." Biotechnology Organization Lockheed Missiles and Space Company, Inc., November 28, 1975.
- 8. "Gas Analyses." Marshall Space Flight Center, Materials and Processes Laboratory Memo 89-310, August 14, 1989.
- 9. "Gas Analyses of the Simplified Integrated Air Revitalization Systems Test." Marshall Space Flight Center, Materials and Processes Laboratory Memo 89-359, September 14, 1989.
- 10. "Preliminary Performance Analysis of the TCCS During the ECLSS Phase III Simplified Integrated Test." Marshall Space Flight Center, Structures and Dynamics Laboratory Memo 171-89, October 17, 1989.
- 11. "Boeing Chemistry Laboratory General Operating Procedure," dated June 14, 1989.

PHASE III SIT INSTRUMENTATION

FOUR-BED MOLECULAR SIEVE INSTRUMENTATION

NUM	DESCRIPTION	ENGU	NUM	DESCRIPTION	ENGU
MD01	POWER	DISCR	MT 07	REC AIR OUT TEMP	DEGF
MD02	HOLD	DISCR	MT08	DES BED 3 INLET	DEGF
MD03	RUN	DISCR	M T09	DES BED 2/4 OUT	DEGF
MD04	MODE 1A	DISCR	MT10	DES BED 2 HTR	DEGF
MD05	MODE 1B	DISCR	MT11	DES BED 4 HTR	DEGF
MD07	MODE 2	DISCR	MT12	BLOWER INLET	DEGF
MD08	MODE 3A	DISCR	MT13	BED 1 TEMP	DEGF
MD09	MODE 3B	DISCR	MT14	BED 3 TEMP	DEGF
MD11	MODE 4	DISCR	MT16	DWNSTR VAC PUMP	DEGF
MD12	CO2 TANK HI PRES	DISCR	XT 03	AIR RETURN TEMP	DEGF
MD13	SB HI TEMP WARN	DISCR	XD01	MOL S AIR IN DEW	DEGF
MT02	BLOWER OUT TEMP	DEGF	MDP1	ADSORB DES BD DP	DEGF
MT03	AD BED 1 INLET	DEGF	MDP2	INLET AIR DEW	DEGF
MT04	AD BED 3 INLET	DEGF	XF06	COOLANT FLOW	GPM
MT05	DES BED 1 INLET	DEGF	XT08	COOLANT IN TEMP	DEGF
XT02	AIR IN TEMP	DEGF	XT07	COOLANT OUT TEMP	DEGF
MV01	SB BED 2 VOLTS	VLTS	FG01	CMS CO2 CONC	MMHG
MV02	SB BED 4 VOLTS	VLTS	XG02	INLET AIR PCO2	MMHG
MP09	CO2 HOLD TANK	PSIA	XG03	OUTLET AIR PCO2	MMHG
MP01	BLOWER OUTLET	PSIG	XF02	CO2 TANK VENT FL	#/HR
MP02	BED 1 IN PRESS	PSIG	XF03	INLET AIR FLOW	#/HR
MP03	BED 3 IN PRES	PSIG	XF05	CO2 OUT FLOW	#/HR
MP04	PURGE BED 1	PSIG	MF01	CO2 FLOW BED 2/4	#/HR
MP05	SORB BED 2/4 IN	PSIG	FP02	CMS PRESSURE	PSIA
MP07	PURGE DES BED 3	PSIG	XP03	MS CO2 OUT PRESS	PSIA
MP08	DESORB BED 2/4	PSIA	XP07	MS GN2 PRESS	PSIG
MP10	DNSTRM VAC PUMP	PSIA	M001	O2 UPSTRM CO2 TK	₹ •.
MP11	PRESS AIR INLET	PSIG	XG01	MOL S O2 IN CO2	5
XP02	MS AIR IN PRES	PSIA	MF01	CO2 FLOW BED 2/4	∦/н к
XT06	MS CO2 OUT TEMP	DEGF			
*FG99	COMB GAS	*LEL			
* FG98	COMB GAS	*LEL			
*FG97	COMB GAS	*LEL			
*FG96	COMB GAS	₹LEL			
*XW01	MS HEATER	WITS			
*XWO2	MS RELAY PWR	WITS			
*XW03	MS AC POWER	WITS			

* Denotes subsystem internal measurement.

STATIC FEED ELECTROLYSIS INSTRUMENTATION

NUM	DESCRIPTION	ENGU	NUM	DESCRIPTION	ENGU
EP03	SFE H20 IN PRES	PSIG	EF06	SFE COOLANT FLOW	GPM
ETO7	SFE H2O IN TEMP	DEGF	ET05	SFE COOLANT TEMP	DEGF
HF08	SFE DI H20 FLOW	CC/M	ET06	SFE COOL OUT TEM	DEGF
EC01	SFE H20 IN COND	MMHG	EE07	SFE CHIL H20 FLW	GPM
EP01	SFE O2 VENT PRES	PSIG	EP06	SFE GN2 IN PRESS	PSIG
EP02	SFE O2 PRO ACC P	PSIG	*EW01	FCA MOTOR 1 VPI	\$
EF01	SFE O2 VENT FLOW	SLPM	*ETT2	O2 OUTLET TEMP	DEGF
ET01	SFE O2 OUT TEMP	DEGF	*ETT3	PCA TEMP	DEGF
ED01	SPE O2 OUT DP	DEGF	*EX02	SFE STATUS	
EG02	SFE H2 IN O2 VNT	PPM	*EV13	MODULE VOLTAGE	VLTS
EP05	SFE H2 OUT PRESS	PSIA	*EIO1	MODULE CURRENT	AMPS
EF03	SFE H2 OUT FLOW	SLPM	*ETT1	COOLANT TEMP	DEGF
ET02	SFE H2 OUT TEMP	DEGF	*EPP1	H2 PRESS	PSIG
ED02	SFE H2 OUT DP	DEGF	*EPP2	H2-O2 DELTA P	PSID
EG03	SFE O2 IN H2 OUT	8	*EPP3	CCA OUTLET	PSID
EG01	SFE HOOD H2 CONC	8	*EPP4	H2O TNK DELTA P	PSID

TCCS INSTRUMENTATION

NUM	DESCRIPTION	ENGU	NUM	DESCRIPTION	EGNU
JI01 JT01	CAT OXIDIZER I	AMPS	JF01	TCCS FLOW	CFM
JP01	RGEN BED DIFF P	"H2O			
JP02	FIXED BED DIFF P	"H2O			
JD01	FIXED BED FAN				
JD02	CAT OXID HTR				
JD03	CAT OXID OVR/TEM				
JD04	CAT OXID OVR/I				
JD05	+15 VCD MON				
JD06	-15 VCD MON				

* Denotes subsystem internal measurement.

BOSCH SUBSYSTEM INSTRUMENTATION

NUM	DESCRIPTION	ENGU	NUM	DESCRIPTION	ENGU
+WD02	REACTOR 2 IN VPI		*WV 06	REAC OUT SEL VAL	
*WD03	REACTORI OUT VPI		*WV07	BYPASS RET VALVE	
+WD01	REACTOR2 OUT VPI		*WV08	RECYC LOOP VALVE	
*WT.01	COND LEV ID FULL		*WV09	WATER DRAIN VALV	
*WI01 *WI02	COND LEV ID EMPT		*WV10	VENT SELECT VALV	
*WD02	GAS COMPOSITION		*WT07	TOTAL OPER TIME	HRS
+WD02	REACTOR 1 HEATER		*WT08	TIME SINCE S/D	HRS
*WD03	REACTOR 2 HEATER		*WT09	TIME OF LAST S/D	HRS
********	COMPRESSOR MOTOR		*WT10	TIME IN NORMAL	HRS
*WD05	WATER PUMP		*WT11	TIME IN SHUTDOWN	HRS
*WA01	COMP SPEED ACT.		*WT13	REAC1 T CONT ON	HRS
+WV01	H2 REACT. VALVE		*WT14	TIME REAC1 HT ON	HRS
*WV02	CO2 REACT. VALVE		*WT15	REAC2 T CONT ON	HRS
*WV03	PURGE VALVE		*WT16	TIME REAC2 HT ON	HRS
*WV04	BYPASS CONT VALV		*WT17	TIME COMPRES ON	HRS
*WV05	REAC IN SEL VALV		*WT18	TIME H2O PUMP ON	HRS
WT02	BOSCH H2 IN TEMP	DEGF	*WF99	H2 FEED GAS FLOW	CC/M
XT05	MS-TSA CO2 TEMP	DEGF	*WH01	RECYC H2 COMP	*
WT01	BOSCH BLEED TEMP	DEGF	*WD01	EXT. SHUT DOWN	
WT03	BCH H2 VENT TEMP	DEGF	*WP01	INLET PRESSURE	PSIA
WP06	BOSCH H2 IN PRES	PSIA	*WP99	PURGE PRESSURE	PSIA
XP06	MS-TSA CO2 PRESS	PSIA	*WP03	REACTOR PRESSURE	PSIA
WP02	BOSCH-TCCS PRESS	PSIA	*WP04	REACTOR PRESSURE	PSIA
WP05	BCH H2 OUT PRESS	PSIA	*WP98	H2 INLET PRESS.	PSIA
WF03	BOSCH H2 IN FLOW	SLMP	*WW99	COMPRESSOR SPEED	RPM
XF04	MOL S TSA CO2 FL	SLPM	*WT01	REACTOR #1 TEMP	DEGF
WF02	BOSCH-TCCS FL	SLPM	*WT98	REACTOR #1 HTR T	DEGF
WF01	BOSCH COOLANT FL	GPM	*WT97	REACTOR #2 TEMP	DEGE
WF06	BCH H2 OUT FLOW	SLPM	*WT04	REACTOR #2 HTR T	DEGE
WG01	BCH HOOD H2 CONC	8	*WT05	COOLANT OUT TEMP	DEGE
			*WT06	COOLANT IN TEMP	DEGF
			*WR01	REACTOR 1 IN VP1	

* Denotes subsystem internal measurement.

87

PHASE III SIT FACILITY INSTRUMENTATION

NUM	DESCRIPTION	ENGU	NUM	DESCRIPTION	ENGU
TT01 TF02 TF01 TT05 TT06 TT03 TT04 TF03 TP02 TP03	SUPPLY AIR TEMP SUPPLY AIR FLOW BY-PASS TEMP BYPASS FLOW THCS CHX OUT TEM THCS CHX IN TEMP CHW IN TEMP CHW OUT TEMP CHILLED RETURN FAN DELTA FILTER DELTA	DEGF CFM DEGF DEGF DEGF DEGF GPM "H20 "H20	FD01 FT01 FP02 FG03	CMS DEW POINT CMS DRY BULB CMS PRESSURE CMS H2 SENSOR	DEGF DEGF PSIA

* Denotes subsystem internal measurement.

	Report Docume	ntation Page	9
1. Report No.	2. Government Accession	No.	3. Recipient's Catalog No.
NASA TM-4204			
4. Title and Subtitle			5. Report Date
Space Station Freedom	Environmental Control and	Life Support	May 1990
System Phase III Simp	lified Integrated Test Detail	ed Report	6. Performing Organization Code
7. Author(s)			8. Performing Organization Report No.
BC Roberts BI Ca	masquillo M V DuBial K	V Oala	
J.L. Perry, and K.M.	Whitlev	. I. Ogie,	10. Work Unit No
······································			
9. Performing Organization Name a	and Address		M-631
George C. Marshall Sp	ace Flight Center		The Contract of Grant No.
Marshall Space Flight (Center, Alabama 35812		
2. Sponsoring Agency Name and /	Address		13. Type of Report and Period Covered
			Technical Memorandum
National Aeronautics a	nd Space Administration		14. Sponsoring Agency Code
5. Supplementary Notes Prepared by Structures	and Dynamics Laboratory,	Science and En	gineering Directorate.
5. Supplementary Notes Prepared by Structures 6. Abstract This report is a d the Marshall Space Fligh This was the first test in systems (ECLSS) tests. 7 line air revitalization (Al description of the SIT co air and water sampling, this report is a full description	and Dynamics Laboratory, escription of the phase III s at Center (MSFC) Core Moo the phase III series integra The basic goal of the SIT w R) subsystems for Space Sta onfiguration, a performance and a discussion of lessons iption of the preprototype E	Science and En simplified integr dule Integration ted environment vas to achieve fu ation Freedom. I analysis of each learned from the CLSS hardware	rated test (SIT) conducted at Facility (CMIF) in 1989. tal control and life support ull integration of the base- Included in-this report is a in subsystem, results from the test. Also included in the used in the test.
5. Supplementary Notes Prepared by Structures 6. Abstract 6. Abstract 6. Abstract 7. Key Words (Suggested by Auth	and Dynamics Laboratory, escription of the phase III s at Center (MSFC) Core Moo the phase III series integra The basic goal of the SIT w R) subsystems for Space Sta onfiguration, a performance and a discussion of lessons ription of the preprototype E	Science and En simplified integr dule Integration ted environment vas to achieve fu analysis of each learned from th ECLSS hardware	gineering Directorate. rated test (SIT) conducted at Facility (CMIF) in 1989. tal control and life support ull integration of the base- Included in-this report is a a subsystem, results from the test. Also included in the used in the test.
5. Supplementary Notes Prepared by Structures 6. Abstract This report is a d the Marshall Space Fligh This was the first test in systems (ECLSS) tests. 7 line air revitalization (Al description of the SIT cc air and water sampling, this report is a full descr 7. Key Words (Suggested by Auth Environmental Control a	and Dynamics Laboratory, escription of the phase III s at Center (MSFC) Core Moo the phase III series integra The basic goal of the SIT w R) subsystems for Space Sta onfiguration, a performance and a discussion of lessons iption of the preprototype E	Science and En simplified integr dule Integration ted environment vas to achieve fu tion Freedom. I analysis of each learned from th ECLSS hardware	gineering Directorate. rated test (SIT) conducted at Facility (CMIF) in 1989. tal control and life support ull integration of the base- Included in-this report is a a subsystem, results from the test. Also included in the used in the test.
5. Supplementary Notes Prepared by Structures 6. Abstract 6. Abstract 7. Key Words (Suggested by Auth Environmental Control a Space Station Freedom	and Dynamics Laboratory, escription of the phase III s at Center (MSFC) Core Moo the phase III series integra The basic goal of the SIT w R) subsystems for Space Sta onfiguration, a performance and a discussion of lessons iption of the preprototype E	Science and En simplified integr dule Integration ted environment vas to achieve fi analysis of each learned from th ECLSS hardware	gineering Directorate. rated test (SIT) conducted at Facility (CMIF) in 1989. tal control and life support ull integration of the base- Included in-this report is a n subsystem, results from the test. Also included in the used in the test.
5. Supplementary Notes Prepared by Structures 6. Abstract This report is a d the Marshall Space Fligh This was the first test in systems (ECLSS) tests. 7 line air revitalization (Al description of the SIT co air and water sampling, this report is a full descr 7. Key Words (Suggested by Auth Environmental Control a Space Station Freedom Air Revitalization	and Dynamics Laboratory, escription of the phase III s at Center (MSFC) Core Moo the phase III series integra The basic goal of the SIT w R) subsystems for Space Sta onfiguration, a performance and a discussion of lessons ription of the preprototype E	Science and En simplified integr dule Integration ted environment vas to achieve fi analysis of each learned from th ECLSS hardware 18. Distribution Staten Unc Subj	gineering Directorate. rated test (SIT) conducted at Facility (CMIF) in 1989. tal control and life support ull integration of the base- Included in-this report is a a subsystem, results from the test. Also included in the used in the test.
5. Supplementary Notes Prepared by Structures 6. Abstract This report is a d the Marshall Space Fligh This was the first test in systems (ECLSS) tests. 7 line air revitalization (Al description of the SIT cc air and water sampling, this report is a full descr 7. Key Words (Suggested by Auth Environmental Control a Space Station Freedom Air Revitalization	and Dynamics Laboratory, escription of the phase III s at Center (MSFC) Core Moo the phase III series integra The basic goal of the SIT w R) subsystems for Space Sta onfiguration, a performance and a discussion of lessons iption of the preprototype E	Science and En simplified integr dule Integration ted environment vas to achieve fu intion Freedom. I analysis of each learned from th ECLSS hardware 18. Distribution Staten Unc Subj	gineering Directorate. rated test (SIT) conducted at Facility (CMIF) in 1989. tal control and life support ull integration of the base- Included in-this report is a an subsystem, results from the test. Also included in the used in the test. nent lassified – Unlimited ject Category 18 21. No. of pages 22. Price
 5. Supplementary Notes 5. Supplementary Notes Prepared by Structures 6. Abstract 6. Abstract 6. Abstract 6. Abstract 6. Abstract 7. Key Words (Suggested by Auther Structure) 8. Security Classif. (of this report) 9. Security Classif. (of this report) 	and Dynamics Laboratory, escription of the phase III s at Center (MSFC) Core Moo the phase III series integra The basic goal of the SIT w R) subsystems for Space Sta onfiguration, a performance and a discussion of lessons tiption of the preprototype E	Science and En simplified integr dule Integration ted environment vas to achieve fi analysis of each learned from th ECLSS hardware 18. Distribution Staten Unc Subj apage)	gineering Directorate. rated test (SIT) conducted at Facility (CMIF) in 1989. tal control and life support ull integration of the base- Included in-this report is a a subsystem, results from the test. Also included in the used in the test. nent lassified – Unlimited ject Category 18 21. No. of pages 22. Price 100 202

For sale by the National Technical Information Service, Springfield, VA 22161-2171
