103 research outputs found

    Trypanosomiase humaine africaine : étude d'un score de présomption de diagnostic au Congo

    Get PDF
    Une enquĂȘte cas-tĂ©moins a Ă©tĂ© rĂ©alisĂ©e au Congo afin de dĂ©finir une grille de score de prĂ©somption de la maladie du sommeil Ă  #T.b. gambiense$, basĂ©e sur une sĂ©lection de critĂšres cliniques et Ă©pidĂ©miologiques de la trypanosomiase, utilisable par les structures sanitaires pĂ©riphĂ©riques. L'enquĂȘte a Ă©tĂ© rĂ©alisĂ©e sur 163 cas et 326 tĂ©moins. Les signes cliniques et les symptĂŽmes retenus sont :fiĂšvre, cĂ©phalĂ©es, prurit et lĂ©sions de grattage, diarrhĂ©e, oedĂšmes, adĂ©nopathies cervicales, troubles du sommeil, troubles de l'appĂ©tit, troubles sexuels, psychisme, signes neurologiques et autres troubles cliniques mineurs. Les autres critĂšres retenus sont les antĂ©cĂ©dents de trypanosomiase humaine africaine (THA) et l'existence d'un cheptel dans la concession. L'analyse des rĂ©sultats confirme qu'il n'existe pas de critĂšre ou groupe de critĂšres pathognomoniques. Aucun des critĂšres sĂ©lectionnĂ©s n'est suffisamment discriminant pour permettre une sĂ©lection des trypanosomĂ©s parmi les consultants. Une grille de score de prĂ©somption semble donc de peu d'utilitĂ© au niveau pĂ©riphĂ©rique; ceci est d'autant plus vrai si l'on considĂšre l'augmentation de la charge de travail. Le faible pouvoir discriminant des signes cliniques et des symptĂŽmes ainsi que des autres paramĂštres de la trypanosomiase africaine met en Ă©vidence la difficultĂ© de mise en place d'une stratĂ©gie d'intĂ©gration efficiente en tant qu'outil diagnostique prĂ©coce. (RĂ©sumĂ© d'auteur

    DORN1/P2K1 and purino-calcium signalling in plants: making waves with extracellular ATP.

    Get PDF
    BACKGROUND AND AIMS:Extracellular ATP governs a range of plant functions, including cell viability, adaptation and cross-kingdom interactions. Key functions of extracellular ATP in leaves and roots may involve an increase in cytosolic free calcium as a second messenger ('calcium signature'). The main aim here was to determine to what extent leaf and root calcium responses require the DORN1/P2K1 extracellular ATP receptor in Arabidopsis thaliana. The second aim was to test whether extracellular ATP can generate a calcium wave in the root. METHODS:Leaf and root responses to extracellular ATP were reviewed for their possible links to calcium signalling and DORN1/P2K1. Leaves and roots of wild type and dorn1 plants were tested for cytosolic calcium increase in response to ATP, using aequorin. The spatial abundance of DORN1/P2K1 in the root was estimated using green fluorescent protein. Wild type roots expressing GCaMP3 were used to determine the spatial variation of cytosolic calcium increase in response to extracellular ATP. KEY RESULTS:Leaf and root ATP-induced calcium signatures differed markedly. The leaf signature was only partially dependent on DORN1/P2K1, while the root signature was fully dependent. The distribution of DORN1/P2K1 in the root supports a key role in the generation of the apical calcium signature. Root apical and sub-apical calcium signatures may operate independently of each other but an apical calcium increase can drive a sub-apical increase, consistent with a calcium wave. CONCLUSION:DORN1 could underpin several calcium-related responses but it may not be the only receptor for extracellular ATP in Arabidopsis. The root has the capacity for a calcium wave, triggered by extracellular ATP at the apex

    Phylogenetic Study of Plant Q-type C2H2 Zinc Finger Proteins and Expression Analysis of Poplar Genes in Response to Osmotic, Cold and Mechanical Stresses

    Get PDF
    Plant Q-type C2H2 zinc finger transcription factors play an important role in plant tolerance to various environmental stresses such as drought, cold, osmotic stress, wounding and mechanical loading. To carry out an improved analysis of the specific role of each member of this subfamily in response to mechanical loading in poplar, we identified 16 two-fingered Q-type C2H2-predicted proteins from the poplar Phytozome database and compared their phylogenetic relationships with 152 two-fingered Q-type C2H2 protein sequences belonging to more than 50 species isolated from the NR protein database of NCBI. Phylogenetic analyses of these Q-type C2H2 proteins sequences classified them into two groups G1 and G2, and conserved motif distributions of interest were established. These two groups differed essentially in their signatures at the C-terminus of their two QALGGH DNA-binding domains. Two additional conserved motifs, MALEAL and LVDCHY, were found only in sequences from Group G1 or from Group G2, respectively. Functional significance of these phylogenetic divergences was assessed by studying transcript accumulation of six poplar C2H2 Q-type genes in responses to abiotic stresses; but no group specificity was found in any organ. Further expression analyses focused on PtaZFP1 and PtaZFP2, the two genes strongly induced by mechanical loading in poplars. The results revealed that these two genes were regulated by several signalling molecules including hydrogen peroxide and the phytohormone jasmonate

    Assessment of vector/host contact: comparison of animal-baited traps and UV-light/suction trap for collecting Culicoides biting midges (Diptera: Ceratopogonidae), vectors of Orbiviruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence and massive spread of bluetongue in Western Europe during 2006-2008 had disastrous consequences for sheep and cattle production and confirmed the ability of Palaearctic <it>Culicoides </it>(Diptera: Ceratopogonidae) to transmit the virus. Some aspects of <it>Culicoides </it>ecology, especially host-seeking and feeding behaviors, remain insufficiently described due to the difficulty of collecting them directly on a bait animal, the most reliable method to evaluate biting rates.</p> <p>Our aim was to compare typical animal-baited traps (drop trap and direct aspiration) to both a new sticky cover trap and a UV-light/suction trap (the most commonly used method to collect <it>Culicoides</it>).</p> <p>Methods/results</p> <p>Collections were made from 1.45 hours before sunset to 1.45 hours after sunset in June/July 2009 at an experimental sheep farm (INRA, Nouzilly, Western France), with 3 replicates of a 4 sites × 4 traps randomized Latin square using one sheep per site. Collected <it>Culicoides </it>individuals were sorted morphologically to species, sex and physiological stages for females. Sibling species were identified using a molecular assay. A total of 534 <it>Culicoides </it>belonging to 17 species was collected. Abundance was maximal in the drop trap (232 females and 4 males from 10 species) whereas the diversity was the highest in the UV-light/suction trap (136 females and 5 males from 15 species). Significant between-trap differences abundance and parity rates were observed.</p> <p>Conclusions</p> <p>Only the direct aspiration collected exclusively host-seeking females, despite a concern that human manipulation may influence estimation of the biting rate. The sticky cover trap assessed accurately the biting rate of abundant species even if it might act as an interception trap. The drop trap collected the highest abundance of <it>Culicoides </it>and may have caught individuals not attracted by sheep but by its structure. Finally, abundances obtained using the UV-light/suction trap did not estimate accurately <it>Culicoides </it>biting rate.</p

    The Chemokine CXCL12 Is Essential for the Clearance of the Filaria Litomosoides sigmodontis in Resistant Mice

    Get PDF
    Litomosoides sigmodontis is a cause of filarial infection in rodents. Once infective larvae overcome the skin barrier, they enter the lymphatic system and then settle in the pleural cavity, causing soft tissue infection. The outcome of infection depends on the parasite's modulatory ability and also on the immune response of the infected host, which is influenced by its genetic background. The goal of this study was to determine whether host factors such as the chemokine axis CXCL12/CXCR4, which notably participates in the control of immune surveillance, can influence the outcome of the infection. We therefore set up comparative analyses of subcutaneous infection by L. sigmodontis in two inbred mouse strains with different outcomes: one susceptible strain (BALB/c) and one resistant strain (C57BL/6). We showed that rapid parasite clearance was associated with a L. sigmodontis-specific CXCL12-dependent cell response in C57BL/6 mice. CXCL12 was produced mainly by pleural mesothelial cells during infection. Conversely, the delayed parasite clearance in BALB/c mice was neither associated with an increase in CXCL12 levels nor with cell influx into the pleural cavity. Remarkably, interfering with the CXCL12/CXCR4 axis in both strains of mice delayed filarial development, as evidenced by the postponement of the fourth molting process. Furthermore, the in vitro growth of stage 4 filariae was favored by the addition of low amounts of CXCL12. The CXCL12/CXCR4 axis thus appears to have a dual effect on the L. sigmodontis life cycle: by acting as a host-cell restriction factor for infection, and as a growth factor for worms

    MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales

    Get PDF
    Mathematical modeling and quantitative study of biological motility (in particular, of motility at microscopic scales) is producing new biophysical insight and is offering opportunities for new discoveries at the level of both fundamental science and technology. These range from the explanation of how complex behavior at the level of a single organism emerges from body architecture, to the understanding of collective phenomena in groups of organisms and tissues, and of how these forms of swarm intelligence can be controlled and harnessed in engineering applications, to the elucidation of processes of fundamental biological relevance at the cellular and sub-cellular level. In this paper, some of the most exciting new developments in the fields of locomotion of unicellular organisms, of soft adhesive locomotion across scales, of the study of pore translocation properties of knotted DNA, of the development of synthetic active solid sheets, of the mechanics of the unjamming transition in dense cell collectives, of the mechanics of cell sheet folding in volvocalean algae, and of the self-propulsion of topological defects in active matter are discussed. For each of these topics, we provide a brief state of the art, an example of recent achievements, and some directions for future research
    • 

    corecore