2,094 research outputs found
Coherent Excitation of the 6S1/2 to 5D3/2 Electric Quadrupole Transition in 138Ba+
The electric dipole-forbidden, quadrupole 6S1/2 5D3/2 transition in Ba+
near 2051 nm, with a natural linewidth of 13 mHz, is attractive for potential
observation of parity non-conservation, and also as a clock transition for a
barium ion optical frequency standard. This transition also offers a direct
means of populating the metastable 5D3/2 state to measure the nuclear magnetic
octupole moment in the odd barium isotopes. Light from a diode-pumped, solid
state Tm,Ho:YLF laser operating at 2051 nm is used to coherently drive this
transition between resolved Zeeman levels in a single trapped 138Ba+ ion. The
frequency of the laser is stabilized to a high finesse Fabry Perot cavity at
1025 nm after being frequency doubled. Rabi oscillations on this transition
indicate a laser-ion coherence time of 3 ms, most likely limited by ambient
magnetic field fluctuations.Comment: 5 pages, 5 figure
Electronic structure and chemical bonding of nc-TiC/a-C nanocomposites
The electronic structure of nanocrystalline (nc-) TiC/amorphous C
nanocomposites has been investigated by soft x-ray absorption and emission
spectroscopy. The measured spectra at the Ti 2p and C 1s thresholds of the
nanocomposites are compared to those of Ti metal and amorphous C. The
corresponding intensities of the electronic states for the valence and
conduction bands in the nanocomposites are shown to strongly depend on the TiC
carbide grain size. An increased charge-transfer between the Ti 3d-eg states
and the C 2p states has been identified as the grain size decreases, causing an
increased ionicity of the TiC nanocrystallites. It is suggested that the
charge-transfer occurs at the interface between the nanocrystalline TiC and the
amorphous C matrix and represents an interface bonding which may be essential
for the understanding of the properties of nc-TiC/amorphous C and similar
nanocomposites.Comment: 13 pages, 6 figures, 1 table;
http://link.aps.org/doi/10.1103/PhysRevB.80.23510
Transplantation of Ciliary Neurotrophic Factor-Expressing Adult Oligodendrocyte Precursor Cells Promotes Remyelination and Functional Recovery after SpinalCord Injury
Demyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressing enhanced green fluorescent protein (EGFP) or CNTF and transplanted into the contused adult thoracic spinal cord 9 d after injury. Seven weeks after transplantation, the grafted OPCs survived and integrated into the injured spinal cord. The survival of grafted CNTF-OPCs increased fourfold compared with EGFP-OPCs. The grafted OPCs differentiated into adenomatus polyposis coli (APC+) OLs, and CNTF significantly increased the percentage of APC+ OLs from grafted OPCs. Immunofluorescent and immunoelectron microscopic analyses showed that the grafted OPCs formed central myelin sheaths around the axons in the injured spinal cord. The number of OL-remyelinated axons in ventrolateral funiculus (VLF) or lateral funiculus (LF) at the injured epicenter was significantly increased in animals that received CNTF-OPC grafts compared with all other groups. Importantly, 75% of rats receiving CNTF-OPC grafts recovered transcranial magnetic motor-evoked potential and magnetic interenlargement reflex responses, indicating that conduction through the demyelinated axons in VLF or LF, respectively, was partially restored. More importantly, recovery of hindlimb locomotor function was significantly enhanced in animals receiving grafts of CNTF-OPCs. Thus, combined treatment with OPC grafts expressing CNTF can enhance remyelination and facilitate functional recovery after traumatic SCI
Recommended from our members
Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides.
BACKGROUND:Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS:The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION:This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism
Resonant soft X-ray Raman scattering of NiO
Resonant soft X-ray Raman scattering measurements on NiO have been made at
photon energies across the Ni 2p absorption edges. The details of the spectral
features are identified as Raman scattering due to d-d and charge-transfer
excitations. The spectra are interpreted within the single impurity Anderson
model, including multiplets, crystal-field and charge-transfer effects. At
threshold excitation, the spectral features consists of triplet-triplet and
triplet-singlet transitions of the 3d8 configuration. For excitation energies
corresponding to the charge-transfer region in the Ni 2p X-ray absorption
spectrum of NiO, the emission spectra are instead dominated by charge-transfer
transitions to the 3d9L-1 final state. Comparisons of the final states with
other spectroscopical techniques are also made.Comment: 9 pages, 2 figures, 2 tables,
http://iopscience.iop.org/0953-8984/14/13/32
Electronic structure investigation of CoO by means of soft X-ray scattering
The electronic structure of CoO is studied by resonant inelastic soft X-ray
scattering spectroscopy using photon energies across the Co 2p absorption
edges. The different spectral contributions from the energy-loss structures are
identified as Raman scattering due to d-d and charge-transfer excitations. For
excitation energies close to the L3 resonance, the spectral features are
dominated by quartet-quartet and quartet-doublet transitions of the 3d7
configuration. At excitation energies corresponding to the satellites in the Co
2p X-ray absorption spectrum of CoO, the emission features are instead
dominated by charge-transfer transitions to the 3d8L-1 final state. The spectra
are interpreted and discussed with the support of simulations within the single
impurity Anderson model with full multiplet effects which are found to yield
consistent spectral functions to the experimental data.Comment: 8 pages, 2 figures, 2 tables,
http://link.aps.org/doi/10.1103/PhysRevB.65.20510
Mesoscale subduction at the Almeria-Oran front. Part 2: biophysical interactions.
This paper presents a detailed diagnostic analysis of hydrographic and current meter data from three, rapidly repeated, fine-scale surveys of the Almeria–Oran front. Instability of the frontal boundary, between surface waters of Atlantic and Mediterranean origin, is shown to provide a mechanism for significant heat transfer from the surface layers to the deep ocean in winter. The data were collected during the second observational phase of the EU funded OMEGA project on RRS Discovery cruise 224 during December 1996. High resolution hydrographic measurements using the towed undulating CTD vehicle, SeaSoar, traced the subduction of Mediterranean Surface Water across the Almeria–Oran front. This subduction is shown to result from a significant baroclinic component to the instability of the frontal jet. The Q-vector formulation of the omega equation is combined with a scale analysis to quantitatively diagnose vertical transport resulting from mesoscale ageostrophic circulation. The analyses are presented and discussed in the presence of satellite and airborne remotely sensed data; which provide the basis for a thorough and novel approach to the determination of observational error
- …
