155 research outputs found
CALIFA, the Calar Alto Legacy Integral Field Area survey: I. Survey presentation
We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey,
which has been designed to provide a first step in this direction.We summarize
the survey goals and design, including sample selection and observational
strategy.We also showcase the data taken during the first observing runs
(June/July 2010) and outline the reduction pipeline, quality control schemes
and general characteristics of the reduced data. This survey is obtaining
spatially resolved spectroscopic information of a diameter selected sample of
galaxies in the Local Universe (0.005< z <0.03). CALIFA has been
designed to allow the building of two-dimensional maps of the following
quantities: (a) stellar populations: ages and metallicities; (b) ionized gas:
distribution, excitation mechanism and chemical abundances; and (c) kinematic
properties: both from stellar and ionized gas components. CALIFA uses the PPAK
Integral Field Unit (IFU), with a hexagonal field-of-view of
\sim1.3\sq\arcmin', with a 100% covering factor by adopting a three-pointing
dithering scheme. The optical wavelength range is covered from 3700 to 7000
{\AA}, using two overlapping setups (V500 and V1200), with different
resolutions: R\sim850 and R\sim1650, respectively. CALIFA is a legacy survey,
intended for the community. The reduced data will be released, once the quality
has been guaranteed. The analyzed data fulfill the expectations of the original
observing proposal, on the basis of a set of quality checks and exploratory
analysis.
We conclude from this first look at the data that CALIFA will be an important
resource for archaeological studies of galaxies in the Local Universe.Comment: 32 pages, 29 figures, Accepted for publishing in Astronomy and
Astrophysic
Bar pattern speeds in CALIFA galaxies: I. Fast bars across the Hubble sequence
The bar pattern speed () is defined as the rotational
frequency of the bar, and it determines the bar dynamics. Several methods have
been proposed for measuring . The non-parametric method
proposed by Tremaine \& Weinberg (1984; TW) and based on stellar kinematics is
the most accurate. This method has been applied so far to 17 galaxies, most of
them SB0 and SBa types. We have applied the TW method to a new sample of 15
strong and bright barred galaxies, spanning a wide range of morphological types
from SB0 to SBbc. Combining our analysis with previous studies, we investigate
32 barred galaxies with their pattern speed measured by the TW method. The
resulting total sample of barred galaxies allows us to study the dependence of
on galaxy properties, such as the Hubble type. We measured
using the TW method on the stellar velocity maps provided by
the integral-field spectroscopy data from the CALIFA survey. Integral-field
data solve the problems that long-slit data present when applying the TW
method, resulting in the determination of more accurate . In
addition, we have also derived the ratio of the corotation radius to
the bar length of the galaxies. According to this parameter, bars can be
classified as fast ( \cal{R}\%\cal{R}$ and the galaxy morphological
type. Our results indicate that independent of the Hubble type, bars have been
formed and then evolve as fast rotators. This observational result will
constrain the scenarios of formation and evolution of bars proposed by
numerical simulations.Comment: 17 pages, 10 figures, accepted for publication in A&
CALIFA : a diameter-selected sample for an integral field spectroscopy galaxy survey
JMA acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild).We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45 '' and 79 : 2 '' and with a redshift 0 : 005 M-r > -23 : 1 and over a stellar mass range between 10(9.7) and 10(11.4) M-circle dot. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of M-r = -19 (or stellar masses <10(9.7) M-circle dot) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies, finding that the sample covers environmental conditions from the field to genuine clusters. We finally consider the expected incidence of active galactic nuclei among CALIFA galaxies given the existing pre-CALIFA data, finding that the final observed CALIFA sample will contain approximately 30 Sey2 galaxies.Peer reviewe
The CALIFA survey across the Hubble sequence: Spatially resolved stellar population properties in galaxies
© ESO, 2015. Various different physical processes contribute to the star formation and stellar mass assembly histories of galaxies. One important approach to understanding the significance of these different processes on galaxy evolution is the study of the stellar population content of today's galaxies in a spatially resolved manner. The aim of this paper is to characterize in detail the radial structure of stellar population properties of galaxies in the nearby universe, based on a uniquely large galaxy sample, considering the quality and coverage of the data. The sample under study was drawn from the CALIFA survey and contains 300 galaxies observed with integral field spectroscopy. These cover a wide range of Hubble types, from spheroids to spiral galaxies, while stellar masses range from MBlack star ∼ 109 to 7 × 1011 M⊙. We apply the fossil record method based on spectral synthesis techniques to recover the following physical properties for each spatial resolution element in our target galaxies: the stellar mass surface density (μBlack star), stellar extinction (AV), light-weighted and mass-weighted ages ('log age'L, 'log age'M), and mass-weighted metallicity ('log ZBlack star'M). To study mean trends with overall galaxy properties, the individual radial profiles are stacked in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd). We confirm that more massive galaxies are more compact, older, more metal rich, and less reddened by dust. Additionally, we find that these trends are preserved spatially with the radial distance to the nucleus. Deviations from these relations appear correlated with Hubble type: earlier types are more compact, older, and more metal rich for a given MBlack star, which is evidence that quenching is related to morphology, but not driven by mass. Negative gradients of 'log age'L are consistent with an inside-out growth of galaxies, with the largest 'log age'L gradients in Sb-Sbc galaxies. Further, the mean stellar ages of disks and bulges are correlated and with disks covering a wider range of ages, and late-type spirals hosting younger disks. However, age gradients are only mildly negative or flat beyond R ∼ 2 HLR (half light radius), indicating that star formation is more uniformly distributed or that stellar migration is important at these distances. The gradients in stellar mass surface density depend mostly on stellar mass, in the sense that more massive galaxies are more centrally concentrated. Whatever sets the concentration indices of galaxies obviously depends less on quenching/morphology than on the depth of the potential well. There is a secondary correlation in the sense that at the same MBlack star early-type galaxies have steeper gradients. The μBlack star gradients outside 1 HLR show no dependence on Hubble type. We find mildly negative 'log ZBlack star'M gradients, which are shallower than predicted from models of galaxy evolution in isolation. In general, metallicity gradients depend on stellar mass, and less on morphology, hinting that metallicity is affected by both - the depth of the potential well and morphology/quenching.Support from the Spanish Ministerio de Economia y Competitividad, through projects AYA2010-15081 (PI R.G.D.), and Junta de Andalucia FQ1580 (PI R.G.D.), AYA2010-22111-C03-03, and AYA2010-10904E (S.F.S.). We also thank the Viabilidad, Diseno, Acceso y Mejora funding program, ICTS-2009-10, for funding the data acquisition of this project. R.C.F. thanks the hospitality of the IAA and the support of CAPES and CNPq. R.G.D. acknowledges the support of CNPq (Brazil) through Programa Ciencia sem Fronteiras (401452/2012-3). A.G. acknowledges support from EU FP7/2007-2013 under grant agreement n.267251 (AstroFIt) and from the EU Marie Curie Integration Grant >SteMaGE> Nr. PCIG12-GA-2012-326466. C.J.W. acknowledges support through the Marie Curie Career Integration Grant 303912. E.P. acknowledges support from the Guillermo Haro program at INAOE. Support for L.G. is provided by the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. L.G. acknowledges support by CONICYT through FONDECYT grant 3140566. J.I.P. acknowledges financial support from the Spanish MINECO under grant AYA2010-21887-C04-01 and from Junta de Andalucia Excellence Project PEX2011-FQM7058. I.M., J.M. and A.d.O. acknowledge support from the project AYA2013-42227-P. RAM is funded by the Spanish program of International Campus of Excellence Moncloa (CEI). J.M. A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild).Peer Reviewe
Mucosal and systemic immune correlates of viral control after SARS-CoV-2 infection challenge in seronegative adults
Human infection challenge permits in-depth, early, and pre-symptomatic characterization of the immune response, enabling the identification of factors that are important for viral clearance. Here, we performed intranasal inoculation of 34 young adult, seronegative volunteers with a pre-Alpha severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain. Of these participants, 18 (53%) became infected and showed an interferon-dominated mediator response with divergent kinetics between nasal and systemic sites. Peripheral CD4+ and CD8+ T cell activation and proliferation were early and robust but showed distinct kinetic and phenotypic profiles; antigen-specific T cells were largely CD38+Ki67+ and displayed central and effector memory phenotypes. Both mucosal and systemic antibodies became detectable around day 10, but nasal antibodies plateaued after day 14 while circulating antibodies continued to rise. Intensively granular measurements in nasal mucosa and blood allowed modeling of immune responses to primary SARS-CoV-2 infection that revealed CD8+ T cell responses and early mucosal IgA responses strongly associated with viral control, indicating that these mechanisms should be targeted for transmission-reducing intervention
The EDGE-CALIFA Survey: Variations in the Molecular Gas Depletion Time in Local Galaxies
We present results from the EDGE survey, a spatially resolved CO(1-0) follow-up to CALIFA, an optical Integral Field Unit survey of local galaxies. By combining the data products of EDGE and CALIFA, we study the variation in molecular gas depletion time (¿dep) on kiloparsec scales in 52 galaxies. We divide each galaxy into two parts: The center, defined as the region within 0.1 R25, and the disk, defined as the region between 0.1 and 0.7 R25. We find that 14 galaxies show a shorter ¿dep (~1 Gyr) in the center relative to that in the disk (¿dep ~ 2.4 Gyr), which means the central region in those galaxies is more efficient at forming stars per unit molecular gas mass. This finding implies that the centers with shorter ¿dep resemble the intermediate regime between galactic disks and starburst galaxies. Furthermore, the central drop in ¿dep is correlated with a central increase in the stellar surface density, suggesting that a shorter ¿dep is associated with molecular gas compression by the stellar gravitational potential. We argue that varying the CO-To-H2 conversion factor only exaggerates the central drop of ¿dep. © 2017. The American Astronomical Society. All rights reserved.We thank the referee, Christine Wilson, for her valuable
input that greatly improved the manuscript. We also thank John
Carpenter for his help in managing the schedule of CARMA
observations and Christopher McKee for insightful discussion.
The works of D.U. and L.B. are supported by the National
Science Foundation (NSF) under grants AST-1140063 and
AST-1616924. A.D.B. and R.C.L. acknowledge support from
NSF through grants AST-1412419 and AST-1615960. A.D.B.
also acknowledges visiting support by the Alexander von
Humboldt Foundation. T.W. and Y.C. acknowledge support
from NSF through grants AST-1139950 and AST-1616199.
The work of ECO is supported by the NSF under grant AST1312006. S.F.S. acknowledges the PAPIIT-DGAPA-IA101217
project and CONACYT-IA-180125. R.G.B. acknowledges
support through grant AYA2016-77846-P. E.R. is supported
by a Discovery Grant from NSERC of Canada. S.V. acknowledges support from NSF AST-1615960.
We acknowledge the usage of the HyperLeda database
(http://leda.univ-lyon1.fr). Support for the CARMA construction was derived from the states of California, Illinois, and
Maryland, the James S. McDonnell Foundation, the Gordon
and Betty Moore Foundation, the Kenneth T. and Eileen L.
Norris Foundation, the University of Chicago, the Associates of
the California Institute of Technology, and NSF. This research
is based on observations collected at the Centro Astronomico
Hispano Aleman (CAHA) at Calar Alto, operated jointly by the
Max-Planck Institute for Astronomy (MPIA) and the Instituto
de Astrofisica de Andalucia (CSIC).
Software: Pipe3D (version 2.2; Sánchez et al. 2016),
MIRIAD (Sault et al. 1995), idl_mommaps.pro (Wong et al. 2013), linmix_err.pro (Kelly 2007), matplotlib (Hunter 2007),
and SciPy (Jones et al. 2001)
Whole body bone scintigraphy in osseous hydatosis: a case report
Hydatid disease is common in many parts of the world, and causes considerable health and economic loss. This disease may develop in almost any part of the body
Bar pattern speeds in CALIFA galaxies: I. Fast bars across the Hubble sequence
Context. The bar pattern speed (Ωb) is defined as the rotational frequency of the bar, and it determines the bar dynamics. Several methods have been proposed for measuring Ωb. The non-parametric method proposed by Tremaine & Weinberg (1984, ApJ, 282, L5; TW) and based on stellar kinematics is the most accurate. This method has been applied so far to 17 galaxies, most of them SB0 and SBa types. Aims. We have applied the TW method to a new sample of 15 strong and bright barred galaxies, spanning a wide range of morphological types from SB0 to SBbc. Combining our analysis with previous studies, we investigate 32 barred galaxies with their pattern speed measured by the TW method. The resulting total sample of barred galaxies allows us to study the dependence of Ωb on galaxy properties, such as the Hubble type. Methods. We measured Ωb using the TW method on the stellar velocity maps provided by the integral-field spectroscopy data from the CALIFA survey. Integral-field data solve the problems that long-slit data present when applying the TW method, resulting in the determination of more accurate Ωb. In addition, we have also derived the ratio R of the corotation radius to the bar length of the galaxies. According to this parameter, bars can be classified as fast (R 1.4). Results. For all the galaxies, R is compatible within the errors with fast bars. We cannot rule out (at 95% level) the fast bar solution for any galaxy. We have not observed any significant trend between R and the galaxy morphological type. Conclusions. Our results indicate that independent of the Hubble type, bars have been formed and then evolve as fast rotators. This observational result will constrain the scenarios of formation and evolution of bars proposed by numerical simulations. © ESO, 2015.J.A.L.A. have been partly funded by the Spanish Ministry for Science, project AYA2013-43188-P. J.M.A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild). R. A. Marino is funded by the Spanish program of International Campus of Excellence Moncloa (CEI). I.M. acknowledges the financial support from the Spanish grant AYA2010-15169 and from the Junta de Andalucia through TIC-114 and the Excellence Project P08-TIC-03531. R.G.D. and E.P. have been partly funded by Spanish grant AYA2010-1581. J.I.P. acknowledges financial support from MINECO AYA2010-21887-C04-01 grant and from Junta de Andalucía Excellence Project PEX2011-FQM7058. S.F.S. acknowledges support from CONACyT grant 180125. This study makes uses of the data provided by the Calar Alto Legacy Integral Field Area (CALIFA) survey (http://www.califa.caha.es). Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut fur Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). CALIFA is the first legacy survey being performed at Calar Alto.The CALIFA collaboration would like to thank the IAA-CSIC and MPIA-MPG as major partners of the observatory, and CAHA itself, for the unique access to telescope time and support in manpower and infrastructures. The CALIFA collaboration thanks also the CAHA staff for the dedication to this project. R.G.D., E.P., R.G.B., and C.C.F. wants to thanks finalcial support from AYA2010-15081. J.F.-B. acknowledges support from grant AYA2013-48226-C3-1-P from MINECO
Viral emissions into the air and environment after SARS-CoV-2 human challenge: a phase 1, open label, first-in-human study
Background
Effectively implementing strategies to curb SARS-CoV-2 transmission requires understanding who is contagious and when. Although viral load on upper respiratory swabs has commonly been used to infer contagiousness, measuring viral emissions might be more accurate to indicate the chance of onward transmission and identify likely routes. We aimed to correlate viral emissions, viral load in the upper respiratory tract, and symptoms, longitudinally, in participants who were experimentally infected with SARS-CoV-2.
Methods
In this phase 1, open label, first-in-human SARS-CoV-2 experimental infection study at quarantine unit at the Royal Free London NHS Foundation Trust, London, UK, healthy adults aged 18–30 years who were unvaccinated for SARS-CoV-2, not previously known to have been infected with SARS-CoV-2, and seronegative at screening were recruited. Participants were inoculated with 10 50% tissue culture infectious dose of pre-alpha wild-type SARS-CoV-2 (Asp614Gly) by intranasal drops and remained in individual negative pressure rooms for a minimum of 14 days. Nose and throat swabs were collected daily. Emissions were collected daily from the air (using a Coriolis μ air sampler and directly into facemasks) and the surrounding environment (via surface and hand swabs). All samples were collected by researchers, and tested by using PCR, plaque assay, or lateral flow antigen test. Symptom scores were collected using self-reported symptom diaries three times daily. The study is registered with ClinicalTrials.gov, NCT04865237.
Findings
Between March 6 and July 8, 2021, 36 participants (ten female and 26 male) were recruited and 18 (53%) of 34 participants became infected, resulting in protracted high viral loads in the nose and throat following a short incubation period, with mild-to-moderate symptoms. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Viral RNA was detected in 63 (25%) of 252 Coriolis air samples from 16 participants, 109 (43%) of 252 mask samples from 17 participants, 67 (27%) of 252 hand swabs from 16 participants, and 371 (29%) of 1260 surface swabs from 18 participants. Viable SARS-CoV-2 was collected from breath captured in 16 masks and from 13 surfaces, including four small frequently touched surfaces and nine larger surfaces where airborne virus could deposit. Viral emissions correlated more strongly with viral load in nasal swabs than throat swabs. Two individuals emitted 86% of airborne virus, and the majority of airborne virus collected was released on 3 days. Individuals who reported the highest total symptom scores were not those who emitted most virus. Very few emissions occurred before the first reported symptom (7%) and hardly any before the first positive lateral flow antigen test (2%).
Interpretation
After controlled experimental inoculation, the timing, extent, and routes of viral emissions was heterogeneous. We observed that a minority of participants were high airborne virus emitters, giving support to the notion of superspreading individuals or events. Our data implicates the nose as the most important source of emissions. Frequent self-testing coupled with isolation upon awareness of first symptoms could reduce onward transmissions.
Funding
UK Vaccine Taskforce of the Department for Business, Energy and Industrial Strategy of Her Majesty's Government
Viral emissions into the air and environment after SARS-CoV-2 human challenge: a phase 1, open label, first-in-human study
Background
Effectively implementing strategies to curb SARS-CoV-2 transmission requires understanding who is contagious and when. Although viral load on upper respiratory swabs has commonly been used to infer contagiousness, measuring viral emissions might be more accurate to indicate the chance of onward transmission and identify likely routes. We aimed to correlate viral emissions, viral load in the upper respiratory tract, and symptoms, longitudinally, in participants who were experimentally infected with SARS-CoV-2.
Methods
In this phase 1, open label, first-in-human SARS-CoV-2 experimental infection study at quarantine unit at the Royal Free London NHS Foundation Trust, London, UK, healthy adults aged 18–30 years who were unvaccinated for SARS-CoV-2, not previously known to have been infected with SARS-CoV-2, and seronegative at screening were recruited. Participants were inoculated with 10 50% tissue culture infectious dose of pre-alpha wild-type SARS-CoV-2 (Asp614Gly) by intranasal drops and remained in individual negative pressure rooms for a minimum of 14 days. Nose and throat swabs were collected daily. Emissions were collected daily from the air (using a Coriolis μ air sampler and directly into facemasks) and the surrounding environment (via surface and hand swabs). All samples were collected by researchers, and tested by using PCR, plaque assay, or lateral flow antigen test. Symptom scores were collected using self-reported symptom diaries three times daily. The study is registered with ClinicalTrials.gov, NCT04865237.
Findings
Between March 6 and July 8, 2021, 36 participants (ten female and 26 male) were recruited and 18 (53%) of 34 participants became infected, resulting in protracted high viral loads in the nose and throat following a short incubation period, with mild-to-moderate symptoms. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Viral RNA was detected in 63 (25%) of 252 Coriolis air samples from 16 participants, 109 (43%) of 252 mask samples from 17 participants, 67 (27%) of 252 hand swabs from 16 participants, and 371 (29%) of 1260 surface swabs from 18 participants. Viable SARS-CoV-2 was collected from breath captured in 16 masks and from 13 surfaces, including four small frequently touched surfaces and nine larger surfaces where airborne virus could deposit. Viral emissions correlated more strongly with viral load in nasal swabs than throat swabs. Two individuals emitted 86% of airborne virus, and the majority of airborne virus collected was released on 3 days. Individuals who reported the highest total symptom scores were not those who emitted most virus. Very few emissions occurred before the first reported symptom (7%) and hardly any before the first positive lateral flow antigen test (2%).
Interpretation
After controlled experimental inoculation, the timing, extent, and routes of viral emissions was heterogeneous. We observed that a minority of participants were high airborne virus emitters, giving support to the notion of superspreading individuals or events. Our data implicates the nose as the most important source of emissions. Frequent self-testing coupled with isolation upon awareness of first symptoms could reduce onward transmissions.
Funding
UK Vaccine Taskforce of the Department for Business, Energy and Industrial Strategy of Her Majesty's Government
- …
