172 research outputs found
The HADES Tracking System
The tracking system of the dielectron spectrometer HADES at GSI Darmstadt is
formed out of 24 low-mass, trapezoidal multi-layer drift chambers providing in
total about 30 square meter of active area. Low multiple scattering in the in
total four planes of drift chambers before and after the magnetic field is
ensured by using helium-based gas mixtures and aluminum cathode and field
wires. First in-beam performance results are contrasted with expectations from
simulations. Emphasis is placed on the energy loss information, exploring its
relevance regarding track recognition.Comment: 6 pages, 4 figures, presented at the 10th Vienna Conference on
Instrumentation, Vienna, February 2004, to be published in NIM A (special
issue
The PANDA GEM-based TPC Prototype
We report on the development of a GEM-based TPC prototype for the PANDA
experiment. The design and requirements of this device will be illustrated,
with particular emphasis on the properties of the recently tested GEM-detector,
the characterization of the read-out electronics and the development of the
tracking software that allows to evaluate the GEM-TPC data.Comment: submitted to NIMA 4 pages, 6 picture
The High-Acceptance Dielectron Spectrometer HADES
HADES is a versatile magnetic spectrometer aimed at studying dielectron
production in pion, proton and heavy-ion induced collisions. Its main features
include a ring imaging gas Cherenkov detector for electron-hadron
discrimination, a tracking system consisting of a set of 6 superconducting
coils producing a toroidal field and drift chambers and a multiplicity and
electron trigger array for additional electron-hadron discrimination and event
characterization. A two-stage trigger system enhances events containing
electrons. The physics program is focused on the investigation of hadron
properties in nuclei and in the hot and dense hadronic matter. The detector
system is characterized by an 85% azimuthal coverage over a polar angle
interval from 18 to 85 degree, a single electron efficiency of 50% and a vector
meson mass resolution of 2.5%. Identification of pions, kaons and protons is
achieved combining time-of-flight and energy loss measurements over a large
momentum range. This paper describes the main features and the performance of
the detector system
Transition Radiation Spectroscopy with Prototypes of the ALICE TRD
We present measurements of the transition radiation (TR) spectrum produced in
an irregular radiator at different electron momenta. The data are compared to
simulations of TR from a regular radiator.Comment: 4 pages, 5 Figures, Proceedings for "TRDs for the 3rd millennium"
(Sept. 4-7, 2003, Bari, Italy
Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR
Substantial experimental and theoretical efforts worldwide are devoted to
explore the phase diagram of strongly interacting matter. At LHC and top RHIC
energies, QCD matter is studied at very high temperatures and nearly vanishing
net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was
created at experiments at RHIC and LHC. The transition from the QGP back to the
hadron gas is found to be a smooth cross over. For larger net-baryon densities
and lower temperatures, it is expected that the QCD phase diagram exhibits a
rich structure, such as a first-order phase transition between hadronic and
partonic matter which terminates in a critical point, or exotic phases like
quarkyonic matter. The discovery of these landmarks would be a breakthrough in
our understanding of the strong interaction and is therefore in the focus of
various high-energy heavy-ion research programs. The Compressed Baryonic Matter
(CBM) experiment at FAIR will play a unique role in the exploration of the QCD
phase diagram in the region of high net-baryon densities, because it is
designed to run at unprecedented interaction rates. High-rate operation is the
key prerequisite for high-precision measurements of multi-differential
observables and of rare diagnostic probes which are sensitive to the dense
phase of the nuclear fireball. The goal of the CBM experiment at SIS100
(sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD
matter: the phase structure at large baryon-chemical potentials (mu_B > 500
MeV), effects of chiral symmetry, and the equation-of-state at high density as
it is expected to occur in the core of neutron stars. In this article, we
review the motivation for and the physics programme of CBM, including
activities before the start of data taking in 2022, in the context of the
worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
On the interplay of body-force distributions and flow speed for dielectric-barrier discharge plasma actuators
The dielectric-barrier discharge plasma actuator is a well-established device commonly operated in boundary-layer airflows for active flow control. In the present experimental investigation, their ability to cause momentum transfer to the surrounding fluid is analyzed by means of spatio-temporal body-force distributions in both quiescent air and external airflow conditions. The work is motivated by the limitation to quiescent-air operating conditions of frequent previous efforts. Available analytical velocity-information-based force derivation approaches are contrasted to investigate the actuator performance under conditions of their area of application. Results of body force in quiescent air, in agreement with literature, confirm the major taken assumption for Navier–Stokes-based body-force formulations—a negligible pressure gradient. However, the previous circumstance turns out as an invalid assumption for plasma actuation encountering an external airflow. These outcomes coincide with the findings in the numerical work of (2015 Numerical investigation of plasma-actuator force-term estimations from flow experiments J. Phys. D: Appl. Phys.48 395203), following the recommendation to apply a vorticity-equation-based approach under such conditions. Furthermore, the shape of the spatio-temporal body-force distribution is observed to undergo changes when the airflow speed increases. On the other hand, the integral force magnitude is found to remain approximately constant. Moreover, the choice of phase resolution of the discharge cycle has an implication on the accuracy of the temporal force evolution, therefore, clarifying the importance of a priori defining the type of body-force analysis in an experiment; i.e. integral force magnitude, time-averaged or time-resolved evaluation. As a promising finding of utmost importance for the actuator performance, the actuator remains as effective as in quiescent air under presence of the external airflow, which immediately renders the actuator fluid-mechanic efficiency to increase for increasing airflow speed
A polymeric nanomedicine diminishes inflammatory events in renal tubular cells
The polyglutamic acid/peptoid 1 (QM56) nanoconjugate inhibits apoptosis by interfering with Apaf-1 binding to
procaspase-9. We now describe anti-inflammatory properties of QM56 in mouse kidney and renal cell models.
In cultured murine tubular cells, QM56 inhibited the inflammatory response to Tweak, a non-apoptotic stimulus. Tweak
induced MCP-1 and Rantes synthesis through JAK2 kinase and NF-kB activation. Similar to JAK2 kinase inhibitors, QM56
inhibited Tweak-induced NF-kB transcriptional activity and chemokine expression, despite failing to inhibit NF-kB-p65
nuclear translocation and NF-kB DNA binding. QM56 prevented JAK2 activation and NF-kB-p65(Ser536) phosphorylation.
The anti-inflammatory effect and JAK2 inhibition by QM56 were observed in Apaf-12/2 cells.
In murine acute kidney injury, QM56 decreased tubular cell apoptosis and kidney inflammation as measured by downmodulations
of MCP-1 and Rantes mRNA expression, immune cell infiltration and activation of the JAK2-dependent
inflammatory pathway. In conclusion, QM56 has an anti-inflammatory activity which is independent from its role as
inhibitor of Apaf-1 and apoptosis and may have potential therapeutic relevance.This work was supported by grants from the Instituto de Salud Carlos III (www.isciii.es), FIS: PI07/0020, CP08/1083, PS09/00447 and ISCIII-RETICS
REDINREN RD 06/0016; Sociedad Española de Nefrología (www.senefro.org). Álvaro Ucero, Sergio Berzal and Carlos Ocaña supported by Fundacion Conchita
Rabago (www.fundacionconchitarabago.net), Alberto Ortiz by the Programa de Intensificación de la Actividad Investigadora in the Sistema Nacional de Salud of
the Instituto de Salud Carlos III and the Agencia ‘‘Pedro Lain Entralgo’’ of the Comunidad de Madrid and CIFRA S-BIO 0283/2006 www.madrid.org/lainentralgo)
and Adrián Ramos, by FIS (Programa Miguel Servet)
- …
