9 research outputs found

    Mechanisms of Cognitive Impairment in Cerebral Small Vessel Disease: Multimodal MRI Results from the St George's Cognition and Neuroimaging in Stroke (SCANS) Study.

    Get PDF
    Cerebral small vessel disease (SVD) is a common cause of vascular cognitive impairment. A number of disease features can be assessed on MRI including lacunar infarcts, T2 lesion volume, brain atrophy, and cerebral microbleeds. In addition, diffusion tensor imaging (DTI) is sensitive to disruption of white matter ultrastructure, and recently it has been suggested that additional information on the pattern of damage may be obtained from axial diffusivity, a proposed marker of axonal damage, and radial diffusivity, an indicator of demyelination. We determined the contribution of these whole brain MRI markers to cognitive impairment in SVD. Consecutive patients with lacunar stroke and confluent leukoaraiosis were recruited into the ongoing SCANS study of cognitive impairment in SVD (n = 115), and underwent neuropsychological assessment and multimodal MRI. SVD subjects displayed poor performance on tests of executive function and processing speed. In the SVD group brain volume was lower, white matter hyperintensity volume higher and all diffusion characteristics differed significantly from control subjects (n = 50). On multi-predictor analysis independent predictors of executive function in SVD were lacunar infarct count and diffusivity of normal appearing white matter on DTI. Independent predictors of processing speed were lacunar infarct count and brain atrophy. Radial diffusivity was a stronger DTI predictor than axial diffusivity, suggesting ischaemic demyelination, seen neuropathologically in SVD, may be an important predictor of cognitive impairment in SVD. Our study provides information on the mechanism of cognitive impairment in SVD

    Revisiting Brain Atrophy and Its Relationship to Disability in Multiple Sclerosis

    Get PDF
    Brain atrophy is a well-accepted imaging biomarker of multiple sclerosis (MS) that partially correlates with both physical disability and cognitive impairment.Based on MRI scans of 60 MS cases and 37 healthy volunteers, we measured the volumes of white matter (WM) lesions, cortical gray matter (GM), cerebral WM, caudate nucleus, putamen, thalamus, ventricles, and brainstem using a validated and completely automated segmentation method. We correlated these volumes with the Expanded Disability Status Scale (EDSS), MS Severity Scale (MSSS), MS Functional Composite (MSFC), and quantitative measures of ankle strength and toe sensation. Normalized volumes of both cortical and subcortical GM structures were abnormally low in the MS group, whereas no abnormality was found in the volume of the cerebral WM. High physical disability was associated with low cerebral WM, thalamus, and brainstem volumes (partial correlation coefficients ~0.3-0.4) but not with low cortical GM volume. Thalamus volumes were inversely correlated with lesion load (r = -0.36, p<0.005).The GM is atrophic in MS. Although lower WM volume is associated with greater disability, as might be expected, WM volume was on average in the normal range. This paradoxical result might be explained by the presence of coexisting pathological processes, such as tissue damage and repair, that cause both atrophy and hypertrophy and that underlie the observed disability

    Neuroprotective effects of testosterone treatment in men with multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system. While current medication reduces relapses and inflammatory activity, it has only a modest effect on long-term disability and&nbsp;gray matter atrophy. Here, we have characterized the potential neuroprotective effects of testosterone on cerebral gray matter in a pilot clinical trial. Ten men with relapsing-remitting MS were included in this open-label phase II trial. Subjects were observed without treatment for 6&nbsp;months, followed by testosterone treatment for another 12&nbsp;months. Focal gray matter loss as a marker for neurodegeneration was assessed using voxel-based morphometry. During the non-treatment phase, significant voxel-wise gray matter decreases were widespread (p≤&nbsp;0.05 corrected). However, during testosterone treatment, gray matter loss was no longer evident. In fact, a significant gray matter increase in the right frontal cortex was observed (p≤&nbsp;0.05 corrected). These observations support the potential of testosterone treatment to stall (and perhaps even reverse) neurodegeneration associated with MS. Furthermore, they warrant the investigation of testosterone's neuroprotective effects in larger, placebo controlled MS trials as well as in other neurodegenerative diseases. This is the first report of gray matter increase as the result of treatment in MS

    The Effect of Disease Modifying Therapies on Brain Atrophy in Patients with Relapsing-Remitting Multiple Sclerosis: A Systematic Review and Meta-Analysis

    No full text
    Background The aim of the present meta-analysis was to evaluate the effect of disease-modifying drugs (DMD) on brain atrophy in patients with relapsing-remitting multiple sclerosis (RRMS) using available randomized-controlled trial (RCT) data. Methods We conducted a systematic review and meta-analysis according to PRISMA guidelines of all available RCTs of patients with RRMS that reported data on brain volume measurements during the study period. Results We identified 4 eligible studies, including a total of 1819 RRMS patients (71% women, mean age 36.5 years, mean baseline EDSS-score: 2.4). The mean percentage change in brain volume was found to be significantly lower in DMD versus placebo subgroup (standardized mean difference: -0.19; 95% CI: -0.27--0.11; p<0.001). We detected no evidence of heterogeneity between estimates (I-2 = 30%, p = 0.19) nor publication bias in the Funnel plots. Sensitivity analyses stratifying studies according to brain atrophy neuroimaging protocol disclosed no evidence of heterogeneity (p = 0.16). In meta-regression analyses, the percentage change in brain volume was found to be inversely related with duration of observation period in both DMD (meta-regression slope = -0.03; 95% CI: -0.04--0.02; p<0.001) and placebo subgroups (meta-regression slope = -0.05; 95%CI: -0.06--0.04; p<0.001). However, the rate of percentage brain volume loss over time was greater in placebo than in DMD subgroup (p = 0.017, ANCOVA). Conclusions DMD appear to be effective in attenuating brain atrophy in comparison to placebo and their benefit in delaying the rate of brain volume loss increases linearly with longer treatment duration
    corecore