148 research outputs found
A 16-channel Digital TDC Chip with internal buffering and selective readout for the DIRC Cherenkov counter of the BABAR experiment
A 16-channel digital TDC chip has been built for the DIRC Cherenkov counter
of the BaBar experiment at the SLAC B-factory (Stanford, USA). The binning is
0.5 ns, the conversion time 32 ns and the full-scale 32 mus. The data driven
architecture integrates channel buffering and selective readout of data falling
within a programmable time window. The time measuring scale is constantly
locked to the phase of the (external) clock. The linearity is better than 80 ps
rms. The dead time loss is less than 0.1% for incoherent random input at a rate
of 100 khz on each channel. At such a rate the power dissipation is less than
100 mw. The die size is 36 mm2.Comment: Latex, 18 pages, 13 figures (14 .eps files), submitted to NIM
The MIDAS experiment: A prototype for the microwave emission of Ultra-High Energy Cosmic Rays
Recent measurements suggest that extensive air showers initiated by
ultra-high energy cosmic rays (UHECR) emit signals in the microwave band of the
electromagnetic spectrum caused by the collisions of the free-electrons with
the atmospheric neutral molecules in the plasma produced by the passage of the
shower. Such emission is isotropic and could allow the detection of air showers
with 100% duty cycle and a calorimetric-like energy measurement, a significant
improvement over current detection techniques. We have built MIDAS (MIcrowave
Detection of Air Showers), a prototype of microwave detector, which consists of
a 4.5 m diameter antenna with a cluster of 53 feed-horns in the 4 GHz range.
The details of the prototype and first results will be presented.Comment: To appear in the proceedings of 12th Topical Seminar on Innovative
Particle and Radiation Detectors (IPRD10), Siena, Italy, 7 - 10 June 201
The MIDAS telescope for microwave detection of ultra-high energy cosmic rays
We present the design, implementation and data taking performance of the
MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view
imaging telescope designed to detect microwave radiation from extensive air
showers induced by ultra-high energy cosmic rays. This novel technique may
bring a tenfold increase in detector duty cycle when compared to the standard
fluorescence technique based on detection of ultraviolet photons. The MIDAS
telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera,
instrumented with feed horns operating in the commercial extended C-Band (3.4
-- 4.2 GHz). A self-trigger capability is implemented in the digital
electronics. The main objectives of this first prototype of the MIDAS telescope
- to validate the telescope design, and to demonstrate a large detector duty
cycle - were successfully accomplished in a dedicated data taking run at the
University of Chicago campus prior to installation at the Pierre Auger
Observatory.Comment: 13 pages, 18 figure
Search for microwave emission from ultrahigh energy cosmic rays
We present a search for microwave emission from air showers induced by
ultrahigh energy cosmic rays with the microwave detection of air showers
experiment. No events were found, ruling out a wide range of power flux and
coherence of the putative emission, including those suggested by recent
laboratory measurements.Comment: 5 pages, 3 figure
Weak Lensing from Space I: Instrumentation and Survey Strategy
A wide field space-based imaging telescope is necessary to fully exploit the
technique of observing dark matter via weak gravitational lensing. This first
paper in a three part series outlines the survey strategies and relevant
instrumental parameters for such a mission. As a concrete example of hardware
design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using
SNAP engineering models, we quantify the major contributions to this
telescope's Point Spread Function (PSF). These PSF contributions are relevant
to any similar wide field space telescope. We further show that the PSF of SNAP
or a similar telescope will be smaller than current ground-based PSFs, and more
isotropic and stable over time than the PSF of the Hubble Space Telescope. We
outline survey strategies for two different regimes - a ``wide'' 300 square
degree survey and a ``deep'' 15 square degree survey that will accomplish
various weak lensing goals including statistical studies and dark matter
mapping.Comment: 25 pages, 8 figures, 1 table, replaced with Published Versio
Performance of a large scale prototype of the ATLAS accordion electromagnetic calorimeter
A 2 m long prototype of a lead-liquid argon electromagnetic calorimeter with accordion-shaped electrodes, conceived as a sector of the barrel calorimeter of the future ATLAS experiment at the LHC, has been tested with electron and pion beams in the energy range 10 to 287 GeV. A sampling term of 10%/root E(GeV) was obtained for electrons in the rapidity range 0 < eta < 1, while the constant term measured over an area of about 1 m(2) is 0.69%. With a cell size of 2.7 cm the position resolution is. about 4 mm/root E(GeV)
Performance of an endcap prototype of the ATLAS accordion electromagnetic calorimeter
The design and construction of a lead-liquid argon endcap calorimeter prototype using an accordion geometry and conceived as a sector of the inner wheel of the endcap calorimeter of the future ATLAS experiment at the LHC is described. The performance obtained using electron beam data is presented. The main results are an energy resolution with a sampling term below and a small local constant term, a good linearity of the response with the incident energy and a global constant term of 0.8\% over an extended area in the rapidity range of . These properties make the design suitable for the ATLAS electromagnetic endcap calorimeter
The Vital Role of Social Workers in Community Partnerships: The Alliance for Gay, Lesbian, Bisexual, Transgender and Questioning Youth
The account of The Alliance for Gay, Lesbian, Bisexual, Transgender, and Questioning (GLBTQ) Youth formation offers a model for developing com- munity-based partnerships. Based in a major urban area, this university-community collaboration was spearheaded by social workers who were responsible for its original conceptualization, for generating community support, and for eventual staffing, administration, direct service provision, and program evaluation design. This article presents the strategic development and evolution of this community- based service partnership, highlighting the roles of schools of social work, academics, and social work students in concert with community funders, practitioners and youth, in responding to the needs of a vulnerable population
Construction and test of a fine-grained liquid argon preshower prototype
A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5~10 was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9 degrees in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150~GeV the space resolution for electrons is better than 250~m in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50~GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider
Test beam results of a stereo preshower integrated in the liquid argon accordion calorimeter
This paper describes the construction of an integrated preshower within the RD3 liquid argon accordion calorimeter. It has a stereo view which enables the measurement of two transverse coordinates. The prototype was tested at CERN with electrons, photons and muons to validate its capability to work at LHC ( Energy resolution, impact point resolution, angular resolution, / rejection )
- …
