640 research outputs found

    Organic charged polaritons in the ultrastrong coupling regime

    Get PDF
    We embedded an all-hydrocarbon-based carbocation in a metallic microcavity that was tuned to resonance with an electronic transition of the carbocation. The measured Rabi splitting was 41% of the excitation energy, putting the system well into the ultrastrong coupling regime. Importantly, due to the intrinsic charge on the carbocation, the polaritons that form carry a significant charge fraction (0.55 e0) and a large charge-to-mass ratio (∼2400 e0/m0). Moreover, the ground state of the ultrastrongly coupled system is calculated to carry about 1% of one elementary charge. These unique properties of our system, together with its convenient preparation, provide a practical platform to study charged polaritons in the ultrastrong coupling regime

    Herschel and Odin observations of H2O, CO, CH, CH+, and NII in the barred spiral galaxy NGC 1365. Bar-induced activity in the outer and inner circumnuclear tori

    Full text link
    The Odin satellite is now into its twentieth year of operation, much surpassing its design life of two years. One of its major pursuits was the search for and study of H2O in the Solar System and the Milky Way galaxy. Herschel has observed the central region of NGC 1365 in two positions, and both its SPIRE and PACS observations are available in the Herschel Science Archive. Herschel PACS images have been produced of the 70 and 160 micron infrared emission from the whole galaxy, and also of the cold dust distribution as obtained from the ratio of the 160 to 70 micron images. The Herschel SPIRE observations have been used to produce maps of the 557 GHz o-H2O, 752 GHz p-H2O, 691 GHz CO(6-5), 1037 GHz CO(9-8), 537 GHz CH, 835 GHz CH+, and the 1461 GHz NII lines; however, these observations have no effective velocity resolution. Odin has recently observed the 557 GHz o-H2O ground state line in the central region with high (5 km/s) spectral resolution. The emission and absorption of H2O at 557 GHz, with a velocity resolution of 5 km/s, has been marginally detected in NGC 1365 with Odin. The H2O is predominantly located in a shocked 15" (1.3 kpc) region near some central compact radio sources and hot-spot HII regions, close to the northeast component of the molecular torus surrounding the nucleus. An analysis of the H2O line intensities and velocities indicates that a shock-region is located here. This is corroborated by a statistical image deconvolution of our SEST CO(3-2) observations, yielding 5" resolution, and a study of our VLA HI absorption observations. Additionally, an enticing 20" HI ridge is found to extend south-southeast from the nucleus, coinciding in position with the southern edge of an OIII outflow cone, emanating from the nucleus. The molecular chemistry of the shocked central region is analyzed with special emphasis on the CO, H2O and CH, CH+ results.Comment: 25 pages, 11 figure

    Semiclassical Time Evolution and Trace Formula for Relativistic Spin-1/2 Particles

    Full text link
    We investigate the Dirac equation in the semiclassical limit \hbar --> 0. A semiclassical propagator and a trace formula are derived and are shown to be determined by the classical orbits of a relativistic point particle. In addition, two phase factors enter, one of which can be calculated from the Thomas precession of a classical spin transported along the particle orbits. For the second factor we provide an interpretation in terms of dynamical and geometric phases.Comment: 8 pages, no figure

    A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite I. The observational data

    Get PDF
    Spectral line surveys are useful since they allow identification of new molecules and new lines in uniformly calibrated data sets. Nonetheless, large portions of the sub-millimetre spectral regime remain unexplored due to severe absorptions by H2O and O2 in the terrestrial atmosphere. The purpose of the measurements presented here is to cover wavelength regions at and around 0.55 mm -- regions largely unobservable from the ground. Using the Odin astronomy/aeronomy satellite, we performed the first spectral survey of the Orion KL molecular cloud core in the bands 486--492 and 541--576 GHz with rather uniform sensitivity (22--25 mK baseline noise). Odin's 1.1 m size telescope, equipped with four cryo-cooled tuneable mixers connected to broad band spectrometers, was used in a satellite position-switching mode. Two mixers simultaneously observed different 1.1 GHz bands using frequency steps of 0.5 GHz (25 hours each). An on-source integration time of 20 hours was achieved for most bands. The entire campaign consumed ~1100 orbits, each containing one hour of serviceable astro-observation. We identified 280 spectral lines from 38 known interstellar molecules (including isotopologues) having intensities in the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart from the ground state rotational 1(1,0)--1(0,1) transitions of ortho-H2O, H218O and H217O, the high energy 6(2,4)--7(1,7) line of para-H2O and the HDO(2,0,2--1,1,1) line have been observed, as well as the 1,0--0,1 lines from NH3 and its rare isotopologue 15NH3. We suggest assignments for some unidentified features, notably the new interstellar molecules ND and SH-. Severe blends have been detected in the line wings of the H218O, H217O and 13CO lines changing the true linewidths of the outflow emission.Comment: 21 pages, 10 figures, 7 tables, accepeted for publication in Astronomy and Astrophysics 30 August 200

    Evolution of realized Eltonian niches across Rajidae species

    Get PDF
    The notion that closely related species resemble each other in ecological niche space (i.e., phylogenetic dependence) has been a long-standing, contentious paradigm in evolutionary biology, the incidence of which is important for predicting the ecosystem-level effects of species loss. Despite being examined across a multitude of terrestrial taxa, many aspects of niche conservatism have yet to be explored in marine species, especially for characteristics related to resource use and trophic behavior (Eltonian niche characteristics, ENCs). We combined ENCs derived from stable isotope ratios at assemblage- and species-levels with phylogenetic comparative methods, to test the hypotheses that benthic marine fishes (1) exhibit similar assemblage-wide ENCs regardless of geographic location and (2) display phylogenetically dependent ENCs at the species level. We used a 12-species sub-set of the monophyletic group Rajidae sampled from three independent assemblages (Central California, Gulf of Alaska, and Northwest Atlantic), which span two ocean basins. Assemblage-level ENCs implied low trophic diversity and high evenness, suggesting that Rajidae assemblages may exhibit a well-defined trophic role, a trend consistent regardless of geographic location. At the species level, we found evidence for phylogenetic dependence of ENCs relating to trophic diversity (i.e., isotopic niche width; SEAc). Whether individuals can be considered functional equivalents across assemblages is hard to ascertain because we did not detect a significant phylogenetic signal for ENCs relating to trophic function (e.g., trophic position). Thus, additional, complimentary approaches are required to further examine the phylogenetic dependence of species functionality. Our approach illustrates the potential of stable isotope-derived niche characteristics to provide insight on macroecological processes occurring across evolutionary time, which could help predict how assemblages may respond to the effects of species loss

    Ground-state ammonia and water in absorption towards Sgr B2

    Get PDF
    We have used the Odin submillimetre-wave satellite telescope to observe the ground state transitions of ortho-ammonia and ortho-water, including their 15N, 18O, and 17O isotopologues, towards Sgr B2. The extensive simultaneous velocity coverage of the observations, >500 km/s, ensures that we can probe the conditions of both the warm, dense gas of the molecular cloud Sgr B2 near the Galactic centre, and the more diffuse gas in the Galactic disk clouds along the line-of-sight. We present ground-state NH3 absorption in seven distinct velocity features along the line-of-sight towards Sgr B2. We find a nearly linear correlation between the column densities of NH3 and CS, and a square-root relation to N2H+. The ammonia abundance in these diffuse Galactic disk clouds is estimated to be about (0.5-1)e-8, similar to that observed for diffuse clouds in the outer Galaxy. On the basis of the detection of H218O absorption in the 3 kpc arm, and the absence of such a feature in the H217O spectrum, we conclude that the water abundance is around 1e-7, compared to ~1e-8 for NH3. The Sgr B2 molecular cloud itself is seen in absorption in NH3, 15NH3, H2O, H218O, and H217O, with emission superimposed on the absorption in the main isotopologues. The non-LTE excitation of NH3 in the environment of Sgr B2 can be explained without invoking an unusually hot (500 K) molecular layer. A hot layer is similarly not required to explain the line profiles of the 1_{1,0}-1_{0,1} transition from H2O and its isotopologues. The relatively weak 15NH3 absorption in the Sgr B2 molecular cloud indicates a high [14N/15N] isotopic ratio >600. The abundance ratio of H218O and H217O is found to be relatively low, 2.5--3. These results together indicate that the dominant nucleosynthesis process in the Galactic centre is CNO hydrogen burning.Comment: 10 pages, 5 figure

    Riemann's theorem for quantum tilted rotors

    Full text link
    The angular momentum, angular velocity, Kelvin circulation, and vortex velocity vectors of a quantum Riemann rotor are proven to be either (1) aligned with a principal axis or (2) lie in a principal plane of the inertia ellipsoid. In the second case, the ratios of the components of the Kelvin circulation to the corresponding components of the angular momentum, and the ratios of the components of the angular velocity to those of the vortex velocity are analytic functions of the axes lengths.Comment: 8 pages, Phys. Rev.

    Submillimeter Emission from Water in the W3 Region

    Full text link
    We have mapped the submillimeter emission from the 1(10)-1(01) transition of ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3 IRS5 region reveals strong water lines at half the positions in the map. The relative strength of the Odin lines compared to previous observations by SWAS suggests that we are seeing water emission from an extended region. Across much of the map the lines are double-peaked, with an absorption feature at -39 km/s; however, some positions in the map show a single strong line at -43 km/s. We interpret the double-peaked lines as arising from optically thick, self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted lines originate in emission near W3 IRS4. In this model, the unusual appearance of the spectral lines across the map results from a coincidental agreement in velocity between the emission near W3 IRS4 and the blue peak of the more complex lines near W3 IRS5. The strength of the water lines near W3 IRS4 suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page

    Objectively measured physical activity among treatment seeking children and adolescents with severe obesity and normal weight peers

    Get PDF
    Background: Treatment seeking children and adolescents with severe obesity often experience barriers to physical activity. Studies objectively measuring physical activity in this group and investigating explanatory factors for physical activity levels could inform clinical practice. Objectives: This study aimed to compare objectively measured physical activity levels among treatment seeking children and adolescents with severe obesity and normal weight peers, and to investigate explanatory factors for time spent in moderate physical activity and vigorous physical activity among children and adolescents with severe obesity. Methods: Children with severe obesity (n = 85) were matched 1:1 by age, gender, and the season for accelerometer measurements with normal weight peers (n = 85). Children wore accelerometers for seven consecutive days, yielding measures of physical activity, sleep duration and timing. Parents reported on screen time, parental body mass index and participation in organized sports. Results: Children and adolescents with severe obesity spent significantly less time in moderate physical activity (12 min, p < 0.001) and vigorous physical activity (21 min, p < 0.001) per day compared to normal weight peers. No difference for time spent in sedentary activity was found between groups. For participants with severe obesity, age ≤12 years (p = 0.009) and participation in organized sports (p = 0.023) were related to more moderate physical activity, while age ≤12 years (p = 0.038) and early sleep timing (p = 0.019) were related to more vigorous physical activity. Conclusion: Children and adolescents with severe obesity were less physically active than their normal weight peers. Factors related to more moderate and vigorous physical activity in children with severe obesity were lower age, participation in organized sports and earlier sleep timing.publishedVersio

    Odin observations of the Galactic centre in the 118-GHz band. Upper limit to the O2 abundance

    Full text link
    The Odin satellite has been used to search for the 118.75-GHz line of molecular oxygen (O2)in the Galactic centre. Odin observations were performed towards the Sgr A* circumnuclear disk (CND), and the Sgr A +20 km/s and +50 km/s molecular clouds using the position-switching mode. Supplementary ground-based observations were carried out in the 2-mm band using the ARO Kitt Peak 12-m telescope to examine suspected SiC features. A strong emission line was found at 118.27 GHz, attributable to the J=13-12 HC3N line. Upper limits are presented for the 118.75-GHz O2 (1,1-1,0) ground transition line and for the 118.11-GHz 3Pi2, J=3-2 ground state SiC line at the Galactic centre. Upper limits are also presented for the 487-GHz O2 line in the Sgr A +50 km/s cloud and for the 157-GHz, J=4-3, SiC line in the Sgr A +20 and +50 km/s clouds, as well as the CND. The CH3OH line complex at 157.2 - 157.3 GHz has been detected in the +20 and +50 km/s clouds but not towards Sgr A*/CND. A 3-sigma upper limit for the fractional abundance ratio of [O2]/[H2] is found to be X(O2) < 1.2 x 10exp(-7) towards the Sgr A molecular belt region.Comment: Accepted for publication in A&A. 6 journal pages, 5 figure
    corecore