2,156 research outputs found

    Tracing the Warm Hot Intergalactic Medium in the local Universe

    Get PDF
    We present a simple method for tracing the spatial distribution and predicting the physical properties of the Warm-Hot Intergalactic Medium (WHIM), from the map of galaxy light in the local universe. Under the assumption that biasing is local and monotonic we map the ~ 2 Mpc/h smoothed density field of galaxy light into the mass density field from which we infer the spatial distribution of the WHIM in the local supercluster. Taking into account the scatter in the WHIM density-temperature and density-metallicity relation, extracted from the z=0 outputs of high-resolution and large box size hydro-dynamical cosmological simulations, we are able to quantify the probability of detecting WHIM signatures in the form of absorption features in the X-ray spectra, along arbitrary directions in the sky. To illustrate the usefulness of this semi-analytical method we focus on the WHIM properties in the Virgo Cluster region.Comment: 16 pages 11 Figures. Discussion clarified, alternative methods proposed. Results unchanged. MNRAS in pres

    Effective-Field-Theory Approach to Top-Quark Production and Decay

    Full text link
    We discuss new physics in top-quark interactions, using an effective field theory approach. We consider top-quark decay, single top production, and top-quark pair production. We identify 15 dimension-six operators that contribute to these processes, and we compute the deviation from the Standard Model induced by these operators. The results provide a systematic way of searching for (or obtaining bounds on) physics beyond the Standard Model.Comment: 24 pages, 12 figures; references added, typos correcte

    Revealing the Warm-Hot Intergalactic Medium with OVI Absorption

    Full text link
    Hydrodynamic simulations of growth of cosmic structure suggest that 30-50% of the total baryons at z=0 may be in a warm-hot intergalactic medium (WHIM) with temperatures ~10^5-10^7K. The O VI \lambda \lambda 1032, 1038 absorption line doublet in the FUV portion of QSO spectra provides an important probe of this gas. Utilizing recent hydrodynamic simulations, it is found that there should be ~5 O VI absorption lines per unit redshift with equivalent widths >= 35 mA, decreasing rapidly to ~0.5 per unit redshift at >= 350 mA. About 10% of the total baryonic matter or 20-30% of the WHIM is expected to be in the O VI absorption line systems with equivalent width >= 20 mA; the remaining WHIM gas may be too hot or have too low metallicity to be detected in O VI. We find that the simulation results agree well with observations with regard to the line abundance and total mass contained in these systems. Some of the O VI systems are collisionally ionized and some are photoionized, but most of the mass is in the collisionally ionized systems. We show that the gas that produces the O VI absorption lines does not reside in virialized regions such as galaxies, groups, or clusters of galaxies, but rather has an overdensity of 10-40 times the average density. These regions form a somewhat connected network of filaments. The typical metallicity of these regions is 0.1-0.3Zsun.Comment: accepted to ApJ Letters; full color Figure 1 may be obtained at http://astro.princeton.edu/~cen/PROJECTS/p2/p2.html (at the bottom of the page

    Heating of the intergalactic medium due to structure formation

    Get PDF
    We estimate the heating of the intergalactic medium due to shocks arising from structure formation. Heating of the gas outside the collapsed regions, with small overdensities (nbnˉb200{n_b \over {\bar n_b}}\ll 200) is considered here, with the aid of Zel'dovich approximation. We estimate the equation of state of this gas, relating the density with its temperature, and its evolution in time, considering the shock heating due to one-σ\sigma density peaks as being the most dominant. We also estimate the mass fraction of gas above a given temperature as a function of redshift. We find that the baryon fraction above 10610^6 K at z=0z=0 is 10\sim 10 %. We estimate the integrated Sunyaev-Zel'dovich distortion from this gas at present epoch to be of order 10610^{-6}.Comment: 5 pages (3 figs), To appear in MNRAS (pink pages

    Constraints on Non-standard Top Quark Couplings

    Full text link
    We study non-standard top quark couplings in the effective field theory approach. All nine dimension-six operators that generate anomalous couplings between the electroweak gauge bosons and the third-generation quarks are included. We calculate their contributions at tree level and one loop to all major precision electroweak observables. The calculations are compared with data to obtain constraints on eight of these operators.Comment: 26 pages, 2 figure

    Recovery of multiple parameters in subdiffusion from one lateral boundary measurement

    Get PDF
    This work is concerned with numerically recovering multiple parameters simultaneously in the subdiffusion model from one single lateral measurement on a part of the boundary, while in an incompletely known medium. We prove that the boundary measurement corresponding to a fairly general boundary excitation uniquely determines the order of the fractional derivative and the polygonal support of the diffusion coefficient, without knowing either the initial condition or the source. The uniqueness analysis further inspires the development of a robust numerical algorithm for recovering the fractional order and diffusion coefficient. The proposed algorithm combines small-time asymptotic expansion, analytic continuation of the solution and the level set method. We present extensive numerical experiments to illustrate the feasibility of the simultaneous recovery. In addition, we discuss the uniqueness of recovering general diffusion and potential coefficients from one single partial boundary measurement, when the boundary excitation is more specialized

    The most ancient spiral galaxy: a 2.6-Gyr-old disk with a tranquil velocity field

    Full text link
    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z=2.54z=2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z2z\gtrsim2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (\sim 400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ±\pm 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ±\pm 2 MM_{\odot} yr1^{-1}, a stellar mass of 109.8±0.3^{9.8 \pm 0.3}MM_{\odot} and a half-light radius of r1/2=2.6±0.7r_{1/2}=2.6 \pm 0.7 kpc, typical of a main-sequence star-forming (SF) galaxy at z2z\sim2. However, the H\alpha\ kinematics show a surprisingly tranquil velocity field with an ordered rotation (VcV_{\rm c} = 200 ±\pm 12 km/s) and uniformly small velocity dispersions (Vσ,meanV_{\rm \sigma, mean} = 23 ±\pm 4 km/s and Vσ,outerdiskV_{\rm \sigma, outer-disk} = 15 ±\pm 2 km/s). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z2z\gtrsim2 that mark the formation epoch of thin disks. Future observations with JWST will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.Comment: 18 pages, 13 figures, 1 table; accepted for publication in Ap

    Dual-Frequency Observations of 140 Compact, Flat-Spectrum Active Galactic Nuclei for Scintillation-Induced Variability

    Get PDF
    The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in Interstellar Scintillation (ISS) for sources at redshifts z > 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources, relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the Intergalactic Medium (IGM), in excess of the expected (1+z)^0.5 angular diameter scaling of brightness temperature limited sources due to cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a sample of 140 compact, flat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H-alpha intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15 to 3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at spectral indices of < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of 3 decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM.Comment: 30 pages, 14 figures, accepted for publication in the Astronomical Journa

    Rewritable nanoscale oxide photodetector

    Full text link
    Nanophotonic devices seek to generate, guide, and/or detect light using structures whose nanoscale dimensions are closely tied to their functionality. Semiconducting nanowires, grown with tailored optoelectronic properties, have been successfully placed into devices for a variety of applications. However, the integration of photonic nanostructures with electronic circuitry has always been one of the most challenging aspects of device development. Here we report the development of rewritable nanoscale photodetectors created at the interface between LaAlO3 and SrTiO3. Nanowire junctions with characteristic dimensions 2-3 nm are created using a reversible AFM writing technique. These nanoscale devices exhibit a remarkably high gain for their size, in part because of the large electric fields produced in the gap region. The photoconductive response is gate-tunable and spans the visible-to-near-infrared regime. The ability to integrate rewritable nanoscale photodetectors with nanowires and transistors in a single materials platform foreshadows new families of integrated optoelectronic devices and applications.Comment: 5 pages, 5 figures. Supplementary Information 7 pages, 9 figure
    corecore