127 research outputs found

    Artery/vein classification using reflection features in retina fundus images

    Get PDF
    Automatic artery/vein (A/V) classification is one of the important topics in retinal image analysis. It allows the researchers to investigate the association between biomarkers and disease progression on a huge amount of data for arteries and veins separately. Recent proposed methods, which employ contextual information of vessels to achieve better A/V classification accuracy, still rely on the performance of pixel-wise classification, which has received limited attention in recent years. In this paper, we show that these classification methods can be markedly improved. We propose a new normalization technique for extracting four new features which are associated with the lightness reflection of vessels. The accuracy of a linear discriminate analysis classifier is used to validate these features. Accuracy rates of 85.1, 86.9 and 90.6% were obtained on three datasets using only local information. Based on the introduced features, the advanced graph-based methods will achieve a better performance on A/V classification.</p

    A Model Analysis of Mechanisms for Radial Microtubular Patterns at Root Hair Initiation Sites

    Get PDF
    Plant cells have two main modes of growth generating anisotropic structures. Diffuse growth where whole cell walls extend in specific directions, guided by anisotropically positioned cellulose fibers, and tip growth, with inhomogeneous addition of new cell wall material at the tip of the structure. Cells are known to regulate these processes via molecular signals and the cytoskeleton. Mechanical stress has been proposed to provide an input to the positioning of the cellulose fibers via cortical microtubules in diffuse growth. In particular, a stress feedback model predicts a circumferential pattern of fibers surrounding apical tissues and growing primordia, guided by the anisotropic curvature in such tissues. In contrast, during the initiation of tip growing root hairs, a star-like radial pattern has recently been observed. Here, we use detailed finite element models to analyze how a change in mechanical properties at the root hair initiation site can lead to star-like stress patterns in order to understand whether a stress-based feedback model can also explain the microtubule patterns seen during root hair initiation. We show that two independent mechanisms, individually or combined, can be sufficient to generate radial patterns. In the first, new material is added locally at the position of the root hair. In the second, increased tension in the initiation area provides a mechanism. Finally, we describe how a molecular model of Rho-of-plant (ROP) GTPases activation driven by auxin can position a patch of activated ROP protein basally along a 2D root epidermal cell plasma membrane, paving the way for models where mechanical and molecular mechanisms cooperate in the initial placement and outgrowth of root hairs.This work was funded by the Knut and Alice Wallenberg Foundation via grant ShapeSystems (KAW 2012.0050) to MG and HJ, the Swedish Research Council (VR2013-4632) to HJ, and the Gatsby Charitable Foundation (GAT3395/PR4) to HJ

    A continuous growth model for plant tissue

    Get PDF
    Morphogenesis in plants and animals involves large irreversible deformations. In plants, the response of the cell wall material to internal and external forces is determined by its mechanical properties. An appropriate model for plant tissue growth must include key features such as anisotropic and heterogeneous elasticity and cell dependent evaluation of mechanical variables such as turgor pressure, stress and strain. In addition, a growth model needs to cope with cell divisions as a necessary part of the growth process. Here we develop such a growth model, which is capable of employing not only mechanical signals but also morphogen signals for regulating growth. The model is based on a continuous equation for updating the resting configuration of the tissue. Simultaneously, material properties can be updated at a different time scale. We test the stability of our model by measuring convergence of growth results for a tissue under the same mechanical and material conditions but with different spatial discretization. The model is able to maintain a strain field in the tissue during re-meshing, which is of particular importance for modeling cell division. We confirm the accuracy of our estimations in two and three-dimensional simulations, and show that residual stresses are less prominent if strain or stress is included as input signal to growth. The approach results in a model implementation that can be used to compare different growth hypotheses, while keeping residual stresses and other mechanical variables updated and available for feeding back to the growth and material properties.This work was supported by the Swedish Research Council (VR2013:4632), the Gatsby Charitable Foundation (GAT3395/PR4), and the Knut and Alice Wallenberg Foundation via project ShapeSystems (KAW2012.0050)

    Sensitivity of non-conditional climatic variables to climate-change deep uncertainty using Markov Chain Monte Carlo simulation

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The data that support the findings of this study are available from the corresponding author upon reasonable request.There is substantial evidence suggesting climate change is having an adverse impact on the world's water resources. One must remember, however, that climate change is beset by uncertainty. It is therefore meaningful for climate change impact assessments to be conducted with stochastic-based frameworks. The degree of uncertainty about the nature of a stochastic phenomenon may differ from one another. Deep uncertainty refers to a situation in which the parameters governing intervening probability distributions of the stochastic phenomenon are themselves subjected to some degree of uncertainty. In most climatic studies, however, the assessment of the role of deep-uncertain nature of climate change has been limited. This work contributes to fill this knowledge gap by developing a Markov Chain Monte Carlo (MCMC) analysis involving Bayes' theorem that merges the stochastic patterns of historical data (i.e., the prior distribution) and the regional climate models' (RCMs') generated climate scenarios (i.e., the likelihood function) to redefine the stochastic behavior of a non-conditional climatic variable under climate change conditions (i.e., the posterior distribution). This study accounts for the deep-uncertainty effect by evaluating the stochastic pattern of the central tendency measure of the posterior distributions through regenerating the MCMCs. The Karkheh River Basin, Iran, is chosen to evaluate the proposed method. The reason for selecting this case study was twofold. First, this basin has a central role in ensuring the region's water, food, and energy security. The other reason is the diverse topographic profile of the basin, which imposes predictive challenges for most RCMs. Our results indicate that, while in most seasons, with the notable exception of summer, one can expect a slight drop in the temperature in the near future, the average temperature would continue to rise until eventually surpassing the historically recorded values. The results also revealed that the 95% confidence interval of the central tendency measure of computed posterior probability distributions varies between 0.1 and 0.3 °C. The results suggest exercising caution when employing the RCMs' raw projections, especially in topographically diverse terrain.Iran National Science Foundation (INSF

    A robust multiple-objective decision-making paradigm based on the water-energy-food security nexus under changing climate uncertainties

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability; The data that support the findings of this study are available from the corresponding author upon reasonable request.From the perspective of the water-energy-food (WEF) security nexus, sustainable water-related infrastructure may hinge on multi-dimensional decision-making, which is subject to some level of uncertainties imposed by internal or external sources such as climate change. It is important to note that the impact of this phenomenon is not solely limited to the changing behavior patterns of hydro-climatic variables since it can also affect the other pillars of the WEF nexus both directly and indirectly. Failing to address these issues can be costly, especially for those projects with long-lasting economic lifetimes such as hydropower systems. Ideally, a robust plan can tolerate these projected changes in climatic behavior and their associated impacts on other sectors, while maintaining an acceptable performance concerning environmental, socio-economic, and technical factors. This study, thus, aims to develop a robust multiple-objective decision-support framework to address these concerns. In principle, while this framework is sensitive to the uncertainties associated with the climate change projections, it can account for the intricacies that are commonly associated with the WEF security network. To demonstrate the applicability of this new framework, the Karkheh River basin in Iran was selected as a case study due to its critical role in ensuring water, energy, and food security of the region. In addition to the status quo, a series of climate change projections (i.e., RCP 2.6, RCP 4.5, and RCP 8.5) were integrated into the proposed decision support framework as well. Resultantly, the mega decision matrix for this problem was composed of 56 evaluation criteria and 27 feasible alternatives. A TOPSIS/Entropy method was used to select the most robust renovation plan for a hydropower system in the basin by creating a robust and objective weighting mechanism to quantify the role of each sector in the decision-making process. Accordingly, in this case, the energy, food, and environment sectors are objectively more involved in the decision-making process. The results revealed that the role of the social aspect is practically negligible. The results also unveiled that while increasing the power plant capacity or the plant factor would be, seemingly, in favor of the energy sector, if all relevant factors are to be considered, the overall performance of the system might resultantly become sub-optimal, jeopardizing the security of other aspects of the water-energy-food nexus.Iran National Science Foundation (INSF
    corecore