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Abstract Automatic artery/vein (A/V) classification is one
of the important topics in retinal image analysis. It allows the
researchers to investigate the association betweenbiomarkers
and disease progression on a huge amount of data for arter-
ies and veins separately. Recent proposed methods, which
employ contextual information of vessels to achieve better
A/V classification accuracy, still rely on the performance of
pixel-wise classification, which has received limited atten-
tion in recent years. In this paper, we show that these
classification methods can be markedly improved. We pro-
pose a new normalization technique for extracting four new
features which are associated with the lightness reflection of
vessels. The accuracy of a linear discriminate analysis clas-
sifier is used to validate these features. Accuracy rates of
85.1, 86.9 and 90.6% were obtained on three datasets using
only local information. Based on the introduced features, the
advanced graph-based methods will achieve a better perfor-
mance on A/V classification.
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1 Introduction

The fundus image is a direct optical capture of the human
retina, including landmarks like the optic disk, the macula
and, most importantly, the retinal circulation system.

The simple and low-cost fundus image acquisition offers
great potential for the images to be used in large-scale screen-
ing programs and relative statistical analysis. Many clinical
studies on retinal vascular changes reveal that biomarkers
like vessel tortuosity and vessel caliber are associated with
the development of diabetic retinopathy, glaucoma, hyper-
tension and other cardiovascular diseases [1–3]. In addition,
previous works on retinal fractal dimension [4] and vascu-
lar tortuosity [5] implied that traditional retinal biomarkers
might reveal more information for disease progression if they
were measured separately on arteries and veins. Therefore,
A/V classification is a necessary step for the measurement
of retinal vascular biomarkers, such as central artery equiva-
lent and central vein equivalent and artery-to-vein diameter
ratio (AVR) [6,7]. However, the analysis of separated trees
of artery and vein has received limited attention, and it is still
open for investigation. Arterial and venous vessels behave
differently under pathological conditions [8]. Therefore, the
separation of arteries and veins on the retinal images provides
new information apart from the usual biomarkers. Several
works on separating retinal arteries and veins have been
proposed in the literature [9–15]. From the recent works,
we can summarize the workflow for an artery/vein (A/V)
classification system. It starts by importing a color fundus
image. Then the vessel segmentation is applied to extract
the vascular network. For each vessel pixel, multiple fea-
tures based on the various color channels are extracted and
used for a supervised A/V classification, called pixel-wise
classification [13]. The label of each vessel centerline, or
vessel segment, is determined by averaging the labels of
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its pixels, called the segment-wise classification [11,14].
Finally, the result of segment-wise classification is cor-
rected by using contextual information extracted from the
vascular structure, like vessels connecting with each other
have the same label and in crossovers they have opposite
labels [9,10,12].

During the last few years, the application of graph-based
approaches to classify arteries and veins has become popu-
lar in retinal image analysis [9–12]. A graph of the vascular
tree represents the topological structure of the vessels. By
including rules like arteries only cross the veins, it improves
the result of pixel-wise classification. However, although
the technique is powerful, it still relies on a good pixel-
wise classification to draw the final decision. Additionally,
if errors were made during the vessel graph construction,
the labeling for the entire tree would go wrong. Therefore, a
robust pixel-wise classification still plays an important role
in A/V separation, as it affects the performance of graph-
based approaches and can be used to correct the incorrect
graph construction. In recent years, new features that give
better image pattern representation have been applied in
fields such as object identification and classification [16,17].
In the field of retinal A/V classification, traditional nor-
malized color intensities are still being used. For instance,
the feature set used in the framework proposed by Dasht-
bozorg et al. [9] is based on the normalized RGB and
HSB, where the normalization technique was proposed by
Foracchia et al. [18] in 2005. The method by Vinayak et
al. [11] extracts four features which are the mean and stan-
dard deviation of the green and hue channels. In addition,
Estrada et al. [12] obtain the localRGB intensity and compute
the mean color value of the three channels. The frame-
work proposed by Hu et al. [10] uses a similar method
by Niemeijer et al. [13] where the feature vector is based
on the red, green, hue, saturation and brightness intensities,
which are normalized to zero mean and unit standard devia-
tion.

It turns out that the pixel-wise A/V classification has
been relatively overlooked and can be further improved.
In this paper, we propose new intensity-based features for
the pixel-wise A/V classification. These features exploit
new luminosity reflection properties of the vessel tissues
in terms of different color channels, and turn out to have
better performance in discriminating retinal arteries from
veins, and improve the result of A/V classification meth-
ods.

The rest of the paper is organized as follows: In Sect. 2,
we introduce the details of the proposed reflection features.
In Sect. 3, we compare these features with the most often
used features, such as raw and normalized RGB, HSB and
Lab color channels. Section 4 is the discussion and Sect. 5
gives the conclusion.

Fig. 1 Retinal images taken from the INSPIRE-AVR dataset. These
images suffer from large intra- and inter-luminosity variation which is
caused by the non-uniform illumination during acquisition

2 Methodology

Blood in arteries contains oxygenated hemoglobin, while
blood in veins contains deoxygenated hemoglobin, which
have good discrimination on the light spectrum. The oxy-
genated hemoglobin absorbs less light with wavelengths
between 600 and 800nm than deoxygenated hemoglobin.
Thus on color retinal images arteries are often brighter than
veins in the red channel, because more light is reflected by
the oxygenated hemoglobin. This difference is used in many
A/V classification approaches to primarily assign A/V labels
or probabilities of being arteries and veins to vessel pixels.

Retinal images often suffer from local luminosity and
contrast variation (see Fig. 1), which is mainly due to non-
uniform illumination and the irregular retinal surface. It
seriously affects theA/Vseparation if the raw intensity values
of the image color channels are used. In order to overcome
this illumination variation, many approaches have been pro-
posed in the literature for image preprocessing [18–21]. In
this paper, we base our new approach on two of them for
optimal artery/vein separation, which are the luminosity nor-
malization method proposed by Foracchia et al. [18] and the
method motivated by the Retinex approach proposed by Job-
son et al. [21].

2.1 Luminosity normalization

The intensity of a retinal image f (x, y) can be modeled by
an illumination–reflection model:

f (x, y) = r(x, y) l(x, y), (1)
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where r(x, y) is the reflection property of a material with
regard to the absorbed light wavelength and l(x, y) is the
general luminosity around a local area, which causes the
inhomogeneous pixel intensity. The arteries and veins show
discrimination in terms of r(x, y), so we need to eliminate
the l(x, y) from the above model and compare the reflec-
tion property directly for A/V separation. The normalization
method proposed by Foracchia et al. [18] is described by the
following formula:

N1(x, y) = f (x, y)
1
n2

∑n2
i f (xi , yi )

. (2)

In the above equation, the numerator is the pixel intensity at
position (x, y). The denominator is the mean filter applied to
the n×n neighbors around (x, y). Since l(x, y) is the image
luminosity caused by the remote light source, we assume
l(x, y) within a certain region has little change, so the above
equation can be simplified through:

N1(x, y) = r(x, y) l(x, y)
1
n2

∑n2
i r(xi , yi ) l(xi , yi )

≈ r(x, y)
1
n2

∑n2
i r(xi , yi )

.

(3)

This method divides the local pixel intensity by the average
intensity within its neighborhood to cancel the luminosity
factor. The result N1 (x, y) is then the direct relation between
local reflection and the average reflection inside its n × n
neighbors.

2.2 Retinex normalization

Another method that eliminates the term l(x, y) is motivated
by the single-scale retinex (SSR)method proposed by Jobson
et al. [21]. The SSR approach separates the two components
by a logarithm transformation which is described by the fol-
lowing equation:

R(x, y) = log I (x, y) − log [G(x, y, σ ) ∗ I (x, y)] , (4)

where I (x, y) is the original image intensity at position
(x, y), G(x, y, σ ) is the Gaussian surrounding of (x, y)with
scale σ and ∗ denotes the convolution operation. In our work,
we first compute the logarithm on the original image and
then apply a mean filter instead of a Gaussian filter to it. The
subtraction of the two results yields the luminosity invariant
image:

log N2 (x, y) = log f (x, y) − 1

n2

n2∑

i

log f (xi , yi ) . (5)

The summation represents a mean filter applied to the neigh-
borhood around a pixel. The luminosity is almost the same
in its neighborhood. So the above equation is simplified as:
log N2(x, y) = log r(x, y) + log l(x, y)−

⎛

⎝ 1

n2

n2∑

i

log r(xi , yi ) + 1

n2

n2∑

i

log l(xi , yi )

⎞

⎠

≈ log r(x, y) − 1

n2

n2∑

i

log r(xi , yi )

= log r(x, y) − 1

n2
log

n2∏

i

r(xi , yi ).

(6)

Finally, we take the exponential to both sides and obtain to
the final form:

N2(x, y) = r(x, y)

n2
√

∏n2
i r(xi , yi )

. (7)

This method uses the logarithmic transformation to subtract
the local luminosity component by its surrounding. The result
N2 (x, y) indicates the ratio of reflection properties between
the local pixel (x, y) and the root of the multiplication inside
its n × n neighbor.

2.3 The reflection property

Note that the most discriminative feature for artery/vein clas-
sification is Noptimal = r(x, y), where the reflection property
of vessel is measured alone. The two normalization strate-
gies eq.(3) and (7) eliminate the luminosity term l(x,y), but
at the same time two denominators which compute the arith-
metic andgeometric average for background tissue andvessel
reflection are added, respectively, and rescale the term r(x, y)
(nonlinear transformation). This results in histogram shifting
on the pixel intensity of artery and vein. In order to avoid the
undesired transformation, and improving the discrimination
between arteries and veins, we propose a set of new features
which are computed based on the described two normaliza-
tion methods.

We consider an n × n window placed on an image patch
which includes both vessel and background tissue. Inside
the window, the reflection property r(xi , yi ) has two clus-
ters: the background tissue rb(x, y) andvessel tissue rv(x, y).
By replacing eq. (3) and (7) with the rb(x, y) and rv(x, y),
N1(x, y) and N2(x, y) become:

N1(x, y) = r(x, y)
1
n2

(∑nb
i rb(xi , yi ) + ∑nv

j rv(x j , y j )
) , (8)

N2(x, y) = r(x, y)

n2
√∏nb

i rb(xi , yi )
∏nv

j rv(x j , y j )
, (9)
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where nb and nv are the number of background pixels and
vessel pixels in the n × n window and r(x, y) is at the center
of the window. For these two equations, we raise both sides
to the power of -1, which flips the fraction upside down, and
move r(x, y) into the summation and multiplication, respec-
tively:

n2N1(x, y)
−1 =

nb∑

j

rb(xi , yi )

r(x, y)
+

nv∑

j

rv(x j , y j )

r(x, y)
, (10)

N2(x, y)
−n2 =

nb∏

i

rb(xi , yi )

r(x, y)

nv∏

j

rv(x j , y j )

r(x, y)
. (11)

In the slidingwindow,weassume that rb(x, y) for all back-
ground pixels is approximately equal; thus, the ratio rb(x,y)

r(x,y)
of each background pixel is approximately equal to a con-
stant value rb. And the same of each vessel pixel rv(x,y)

r(x,y) are
approximately equal to a constant value rv . Now eq. (11)
and (12) can be rewritten as:

{
N1(x, y)−1 ≈ 1

n2
(nbrb + nvrv)

N2(x, y)−1 ≈ (rbnbrvnv )
1
n2 .

(12)

Let a constant value a (0 < a < 1) represent the ratio
between the number of background pixels and the total num-

ber of pixels contained in the window
(
a = nb

n2

)
, the above

two equations become:

{
N1(x, y)−1 ≈ (a rb + (1 − a) rv)
N2(x, y)−1 ≈ rba rv1−a .

(13)

Since a can be estimated from a vessel binary segmen-
tation of the image, the above two equations contain two
unknown variables. From them, we can solve two solutions,
where one is larger than one and the other is approximately
equal to one. If the center r(x, y) is a vessel pixel, rb is the
solution that is larger than one (|rb| > 1), because the back-
ground reflection rb(x, y) is usually higher than the vascular
reflection r(x, y). Similarly, rv is the solution which is close
to one (|rv| ≈ 1) because rv(x, y) is approximately equal to
r(x, y).

rb is the approximate of rb(x,y)
r(x,y) and rv is the approximate

of rv(x,y)
r(x,y) for each pixel in the patch. But in our A/V classifi-

cation, we use rb−1 and rv−1 as features instead of using rb
and rv in order to keep them linear with respect to r(x, y).
Besides using rb−1 and rv−1, rb

rv
and rv

rb
are also computed,

where rb
rv

= rb(x,y)
rv(x,y) and rv

rb
= rv(x,y)

rb(x,y)
are the ratios between

the background reflection and the vessel reflection, with the
local term r(x, y) eliminated. In Fig. 2a, we show a small
patch taken from a retinal image with high luminosity vari-
ation. For this patch, we obtain the N1 and rb−1 as well as

Artery

Vein

Artery

Vein

Artery

Vein

Raw−Artery
Raw−Vein

0.2

0.4

0.6

0.8

Background Background

N1−Artery
N1−Vein0.2

0.4

0.6

0.8

Vessel

0.2

0.4

0.6

0.8

r −1−Vein

r
profile

r
−1−

(a)

(b)

(c)

Fig. 2 A small patch of a retinal image with high luminosity variation
and its correspondingpatches on N1(x, y) and rb−1. The vessel intensity
profiles on the artery and vein are shown on the right side. The intensity
values are normalized between 0 and 1

the corresponding intensity profiles for an artery and a vein
as shown in Fig. 2b, c. As we can see in the profile plots, the
discrimination between the artery and the vein is better in
the rb−1 channel. Specifically, at the central reflection part,
rb−1 gives a better separation on the two vessels, while the
intensity profiles of the raw red and the normalized red are
almost overlapped.

3 Experimental Results

To validate our proposed reflection property features, we
use retinal images from three datasets. The INSPIRE-AVR
[22] (referred as INSPIRE) contains 40 optic disc-centered
images with resolution 2392×2048. A/V labels for the ves-
sel centerlines are provided by Dashtbozorg et al. [9]. The
second dataset consists of 45 optic disc-centered images with
size of 3744×3744, acquired in the Ophthalmology Depart-
ment of the Academic Hospital Maastricht (AZM) in the
Netherlands. These images were captured by aNIDEKAFC-
230 non-mydriatic auto fundus camera (referred as NIDEK),
and the A/V labels of the vessel centerlines were provided
by an expert using the “NeuronJ” software [23]. The third
dataset is the VICAVR dataset [24] (referred as VICAVR)
containing 58 images. From this dataset, the four images
with different resolutions compared to the dataset descrip-
tion are discarded, and the remained 54 images with size
768×576 are used. The pixel coordinates with A/V labeled
are provided by three different experts, while we used the
ones from expert 1 as reference.

For the INSPIRE dataset, half of the images are used for
training and the rest are used for testing. For the NIDEK
dataset, 25 images are used for training and 20 images are
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Table 1 The accuracy of the LDA classifier using different channels individually on the INSPIRE-AVR, NIDEK and VICAVR datasets. The bold
values indicate the best performance obtained on each color channel

Dataset Features RGB HSB Lab

Red (%) Green (%) Blue (%) Hue (%) Saturation (%) Brightness (%) L(%) a (%) b (%)

INSPIRE-AVR Ir 51.8 56.4 51.2 54.9 51.2 51.8 54.3 50.2 50.1

In 67.9 58.2 53.9 54.9 55.6 67.9 63.8 59.4 61.7

rb−1 70.5 62.2 52.8 52.8 55.8 70.5 67.5 57.9 64.4

rv−1 58.7 52.8 52.8 52.8 53.8 58.7 55.4 52.8 52.8
rb
rv

72.7 56.5 52.8 52.9 55.4 72.8 68.7 52.8 52.8
rv
rb

72.6 63.3 52.8 58.3 55.3 72.7 68.4 57.2 66.2

NIDEK Ir 55.0 54.8 58.4 55.0 55.0 55.1 54.5 54.5 55.0

In 73.6 62.9 57.2 57.6 55.2 73.6 71.7 63.1 69.5

rb−1 74.5 64.2 57.6 55.2 55.5 74.5 73.2 65.4 70.8

rv−1 66.8 57.4 54.9 57.2 54.8 66.8 64.0 64.6 63.5
rb
rv

72.2 65.2 58.9 57.9 56.8 72.2 72.1 54.8 69.7
rv
rb

72.0 64.0 59.0 57.9 56.9 72.0 71.8 54.8 69.7

VICAVR Ir 54.5 69.3 53.9 50.3 51.7 54.5 67.8 67.3 60.1

In 59.7 75.4 52.4 76.3 51.8 59.7 69.8 58.4 64.4

rb−1 63.0 82.9 56.3 80.6 51.5 63.0 76.1 61.2 73.5

rv−1 54.4 65.5 51.7 64.5 55.7 54.4 60.5 65.8 57.1
rb
rv

69.8 84.9 52.5 82.5 61.6 69.8 78.9 62.9 77.1
rv
rb

69.9 85.4 55.0 82.4 61.5 69.9 79.2 63.4 77.2

used for testing. For the VICAVR dataset, since the amount
of ground truth is much less than the previous two datasets,
we apply a 5-fold cross-validation to examine the features.
For every vessel pixel, we extract the raw RGB, HSB and
Lab color intensities. Then for each color intensity, we com-
pute the normalized intensity using the method proposed in
[18] and our reflection features including rb−1, rv−1, rbrv and
rv
rb
. For every pixel in total 54 (9×6) features (see Table 1)

are extracted. These features are validated by calculating the
accuracy of a supervised linear discriminate analysis (LDA)
classifier , as it is a simple technique with good performance
on pixel-wise artery/vein classification [9,13]:

Accuracy = T P + T N

T P + T N + FP + FN
, (14)

where TP, TN, FP and FN represent the true positive, true
negative, false positive and false negative, respectively, given
by the confusionmatrix of the classifier. The decision bound-
ary of the classifier is set to 0.5 in all experiments. Due to
the variation among different images, we apply the follow-
ing normalization to correct the bias shifting for the feature
values:

f̃v = fv − μ( fv)

σ ( fv)
, (15)

where fv , μ( fv) and σ( fv) are the original feature obtained
from one image and the corresponding mean value and stan-
dard deviation, and thus, f̃v is the normalized feature with
zero mean and unit standard deviation.

In Table 1, we compare the pixel-wise classification accu-
racy of the original Ir and the normalized In intensity of the
RGB, HSB and Lab channels with our proposed reflection
features on the INSPIRE, NIDEK and VICAVR datasets.
Table 2 shows the pixel-wise accuracy of using the normal-
ized intensity combined with the four reflection features for
each color channel. Moreover, we measure the performance
of the segment-wise classification with the LDA using the
combined feature sets. First for each pixel (x, y), the proba-
bility value of being an artery Pa(x, y) is obtained using the
pixel-wise classification. Afterward, the type of each vessel
segment is determined by calculating the average of proba-
bility values Pa of the pixels belonging to the same segment.
If Pa is higher than 0.5, the vessel segment is labeled as
an artery and otherwise it is labeled as a vein. Finally, the
A/V label of segment is used to update the label of pixels.
The last column of Table 2 shows the accuracy of using the
combination of normalized intensities and the four reflection
features. In Table 3, we compare the performance obtained
using both the normalized and the reflection features with
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Table 2 The LDA classification accuracy of combined features

Dataset Features RGB HSB Lab All features

Red (%) Green (%) Blue (%) Hue (%) Sat. (%) Bright. (%) L(%) a (%) b (%)

INSPIRE-AVR Pixel-wise 74.4 63.5 54.4 56.9 56.0 74.5 70.9 60.3 64.4 79.3

Segment-wise 78.2 66.7 54.3 56.1 58.2 78.4 73.2 66.4 72.1 85.1

NIDEK Pixel-wise 75.0 65.9 58.7 57.0 56.2 75.0 73.4 66.3 71.1 77.3

Segment-wise 84.7 78.1 62.0 56.3 57.4 84.7 80.5 79.1 78.1 86.9

VICAVR Pixel-wise 70.4 85.7 57.6 82.6 61.9 70.4 79.6 64.7 77.5 87.6

Segment-wise 73.9 87.4 58.4 85.6 64.1 73.9 82.5 69.1 81.9 90.6

Table 3 Result of the proposed reflection features against most recent automated methods for blood vessel classification on publicly available
databases

Method Classification technique INSPIRE-AVR VICAVR

Accuracy AUC Accuracy AUC

Proposed features Segment-wise classification with LDA 85.1% 0.87 90.6% 0.95

Estrada et al. [12] Graph-based framework 90.9% – – –

Dashtbozorg et al. [9] Graph-based method with LDA 84.9% – 89.8% –

Niemeijer et al. [13] Vessel cross-sectional profile and centerline profile with LDA – 0.84 – –

Vazquez et al. [25] Clustering method and vessel tracking method – – 88.8% 0.95

Bold values indicate the highest performance among different features in each color channel (in each column)

the most recent works on retinal artery/vein classification.
We discuss the comparison in the next section.

4 Discussion

The validation on three datasets shows that using an indi-
vidual raw color intensity can hardly classify the pixels as
artery and vein, since the accuracies are mostly around 50%.
It implies that the intensities, with the effect of luminos-
ity variation, have no discrimination between arteries and
veins. When the luminosity factor is eliminated from the
reflection–illumination model and the nonlinear histogram
transformation is avoided, the accuracy increases. On the
INSPIRE dataset, rb−1 and rb

rv
features of both red and bright-

ness channels improve the classification accuracy by about
20%. Moreover, these two features computed on the L chan-
nel improve the accuracy by 14%. On the other hand, we
can notice that the accuracy of rv−1 computed over all the
channels is still less than 60%. These results are anticipated
because the feature takes the ratio between the vascular pixel
and the local pixel inside the sliding window, so if the center
of the window is placed on a vessel, rv−1 is always approxi-
mately equal to 1 giving no discrimination between arteries
and veins.

Additionally, similar results are found in the NIDEK
dataset. As we can see in Table 1, the raw intensities can
hardly discriminate arteries from veins, while the proposed

features still help improving the performance. The accuracy
of using rb−1 of both red and brightness increases to 74.5%,
and rb

rv
increases to 72.1%. The results of L and b channels

increase to 73.2 and 70.8% for rb−1 and 72.1 and 69.7% for
rb
rv
. Figure 3 shows the histogram of raw red intensity, corre-

sponding rb−1, rv−1 and rb
rv

for all pixels of the 45 NIDEK
images. As we can see from the plots, compared with the
raw red intensity, the reflection features, rb−1 and rb

rv
, pro-

vide better separations on pixels of arteries and veins.
What is more, in Fig. 4, we show four patches taken from

different NIDEK images with their correspondingA/V label-
ing, the pixel-wise classification of using nine raw intensities
(third row), nine normalized intensities (fourth row), nine
rb−1 features (fifth row) and the combination of the normal-
ized and reflection features (sixth row). As we can see from
the results, the classification of using raw intensities is highly
affected by the shadow of the images. The normalized inten-
sities avoid the effect of illumination variation, while this
involves undesired histogram shifting. This effect is signifi-
cant when training a classifier with a large volume of training
set.

Our proposed reflection features not only eliminate the
luminosity effect, but also avoid the histogram shifting. Thus
a more robust classifier is trained, as we can see from the 5th
and 6th rows in Fig. 4.

Beside the comparison with pixel-wise classification,
Fig. 5 shows the segment-wise classification of using the raw
intensities, the normalized intensities, the reflection features
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Fig. 3 The histograms of 45 images in the NIDEK dataset in terms of a red, b rb−1, c rv−1 and d rb
rv

where the arteries and veins are separated
(color figure online)

and the combination of normalized and reflection features.
As we can see from the patches, a better pixel-wise classi-
fication yields a better segment-wise classification. It means
that a contextual-based A/V classification approach can still
be improved by using a better pixel-wise classification.

In the VICAVR dataset, the reflection features also out-
perform the raw and normalized intensities. Specifically, the
accuracy of rb−1 computed on the green and hue channel
reaches 82.9 and 80.6%. The rb

rv
computed on these two

intensities has 84.9 and 82.5% accuracy, respectively. The
accuracy of these two reflection features computed on L and
b channels is relatively low, but still better than the corre-
sponding raw and normalized values.

Table 2 shows the accuracy of LDA classifier using the
combination of the normalized intensities with the four
reflection features for every color channel separately. Beside
the ones that are not discriminative at all, the combination
of features generally yields higher accuracy than using the
individual ones. The last column shows the performance of
joining all normalized intensities with the reflection features
of all channels. As we can see, the A/V classification gets
further improved among all datasets, where we achieve 79.3,
77.3 and 87.6% accuracy with using only local intensities as
features.

Moreover, we apply the segment-wise classification for all
datasets, which can be considered as using simple contextual
information to improve the result of pixel-wise classification.
As we can see in the last column of Table 2, we obtained the
best A/V separation accuracy. In the INSPIRE and NIDEK
datasets, it achieves the accuracy of 85.1 and 86.9%, respec-
tively, when all the features are used. For the VICAVR, the
accuracy increases from 87.6 to 90.6% (Fig. 6).

The results in Table 2 suggest that using the combination
of the proposed reflection features and the traditional normal-
ized intensities yields a better classification than using each
of them alone. To investigate the relevant contribution of the
features to the final classification, we conduct a 100-rounds
greedy forward feature selection on the 54 features using the
INSPIRE dataset. At each round, the centerline pixels of the
40 images are randomly assigned to ten groups, and then a 10-
fold cross-validation is used to validate the improvement of
adding each feature to the feature subset. Thenumber of times
that each feature being selected is counted and illustrated in
Fig. 6. As we can see from the polar plot, 13 features get
selected more than 75 times out of 100, which includes one
raw intensity, four normalized intensities and eight reflection
features: rb−1 on the red, green, blue and a channels, rb

rv
on

the brightness channel and rv
rb

on the green, brightness and a
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Fig. 4 Comparison ofA/Vpixel-wise classifications by using different
feature subsets. First row: small patches taken from the test images of the
NIDEK dataset; second row: the A/V labels that are used as reference;
third row: pixel-wise classifications using nine raw intensities; fourth
row: pixel-wise classifications using nine normalized intensities using

the normalization method by [18]; fifth row: pixel-wise classifications
of using the combination of reflection features rb−1 computed based
on each color channels; last row: pixel-wise classifications using total
45 features including all the normalized intensities and the reflection
features
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5 Comparison of A/V pixel-wise and segment-wise classifica-
tions of using different feature subsets. a: the original patch. f : the A/V
labeling. b–e: the pixel-wise classification of using raw intensities, nor-
malized intensities, proposed reflection features and the combination
of normalized intensities and reflection features. g–j: the correspond-

ing segment-wise classification, where the label of each segment is
determined be averaging the label of pixels of it. Yellow color repre-
sents a wrongly classified vessel segment. a Raw patch, b Ir , c In , d
reflection features, e In and reflection features, f Ground truth, g Ir , h
In(i)reflection features, (j)In and reflection features (color figure online)
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Fig. 6 ROC curves of the LDA classifier using raw, normalized and the reflection features for a INSPIRE-AVR, bNIDEK and c VICAVR datasets

channels. The feature selection result implies that these eight
proposed reflection features have robust predictive power on
artery/vein discrimination in combination with other tradi-
tional features. It benefits future studies as fewer features
need to be extracted with no degradation in performance.

In Fig. 7, we plot the ROC curves for the three datasets. In
this figure, the blue curves represent the feature subset of all
raw intensities. The red curves are all normalized intensities.
The green curves are all reflection features, and the purple
curves indicate the combination of normalized intensities and
the reflection features. As we compare the ROC curves with

respect to different datasets, the reflection features outper-
form the conventional normalized intensities, which reach
the AUC of 0.87, 0.84 and 0.95 for the INSPIRE, NIDEK
and VICAVR datasets, respectively. We also observe that
joining the normalized features with the reflection features
gives small improvements, where the AUC increment for the
purple curves compared to the green curves is less than 0.01.

In Table 3, we show a comparison between using the
proposed features and the most recent methods on the clas-
sification performance of vessel centerline pixels. On the
INSPIRE dataset, after applying the voting procedure as

123



32 Fan Huang et al.

Ro Go Bo
Hueo

Sato
Brio

Lo

ao

bo

Rn

Gn

Bn

Huen

Satn

Brin

Ln

an

bn

RrB

GrB

BrB
HuerB

SatrBBrirBLrBarBbrB
Rrv

Grv
Brv

Huerv

Satrv

Brirv

Lrv

arv

brv

RrB /rv

GrB /rv

BrB /rv

HuerB /rv

SatrB /rv

BrirB /rv

LrB /rv

arB /rv

brB /rv

Rrv /rB

Grv /rB

Brv /rB

Huerv /rB

Satrv /rB

Brirv /rB
Lrv /rB

arv /rB
brv /rB

0.

20.

40.

60.

80.

100.

Fig. 7 Polar plot for a 100-rounds greedy forward feature selection
result on the 54 features using the INSPIRE dataset. Different col-
ors represent different categories of the features including the original
intensities, the normalized intensities and the four proposed reflection
features (color figure online)

described in Sect. 3, we achieved an accuracy of 85.1%
and an AUC of 0.87. The AUC value is higher than the
value of 0.84 obtained by Niemeijer et al. [13], where the
same segment-wise classification procedure was used. Our
achieved accuracy of 85.1% is slightly higher than the result
(84.9%) reported by Dashtbozorg et al. [9], but lower than
the result (90.9%) reported by Estrada et al. [12]. Note that
both techniques are based on graph analysis, which exploit
branching and crossing patterns to build the whole vascular
network for the final pixel classification. On the VICAVR
dataset, we obtain an accuracy of 90.6%, which is better than
the values achieved by Vazquez et al. [25] (88.80%) and
Dashtbozorg et al. [9] (89.80%) on the same dataset. The
table implies that the combination of the proposed features
and the graph-based techniques may lead to a better perfor-
mance.

However, the proposed reflection features have several
limitations compared to the conventional luminosity nor-
malization methods. First of all, the procedure for solving
eq. 13 takes longer time than the traditional methods, espe-
cially for imageswith large resolution,wheremore centerline
pixels are taken into account. Our method needs to find the
solution pixel by pixel, while the traditional ones are con-
volution based. Therefore, it is not ready yet for automatic
A/V classification large-scale study. This limitation can be
solved by introducing parallel computing and using a pre-
computed lookup table for eq. 13 in future applications.
Secondly, in recent works, features like the vessel intensity

profile and intensity distribution within a certain neighbor-
hood [9,13,26] are used,while in this paper, we only examine
and compare the local values of pixel. It is interesting for
future work to look at the reflection properties along one
vessel segment or within a small neighborhood.

5 Conclusion

In this paper, we describe how to cancel the effect of lumi-
nosity variation on retinal arteries and veins separation. To
solve this problem, we proposed four new features that avoid
the affect of image lightness inhomogeneity. Moreover, the
features compute the relation between the lightness reflection
of vessel pixels and background pixels, and thus, the tissue
lightness reflection properties of arteries and veins can be bet-
ter discriminated. We tested our features on three datasets.
The results show that the features outperform the traditional
illumination normalizationmethods,which have beenwidely
used in the recently proposed A/V classification approaches.
Furthermore, the accuracy of using the introduced features
with a segment-wise classification is comparable with recent
works, which rely on using the sub/full vascular tree to
improve the artery/vein separation. Therefore, we believe
that our proposed features combined with advanced graph-
based methods will achieve superior performance on retinal
artery/vein classification.
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