815 research outputs found

    The effect of fast and regeneration in light versus dark on regulation in the hydra-algal symbiosis

    Get PDF
    Green hydra are able to regenerate tentacles after fast durations which cause brown, i.e., asymbiotic, hydra to fail completely, but the presence of endosymbiotic algae does not always enhance regeneration in fasted hydra. Green hydra whose nutritional state falls below some threshold, exhibit a light induced inhibition of regeneration. That is, hydra, fasted in the light, then randomly assigned to light or dark after decapitation, regenerate better in the dark. This effect of light does not appear to be present either in brown hydra or in normally green hydra from which the algae were removed. In a large strain of Chlorohydra viridissima, after fasts of intermediate duration (10 and 15 days), this light induced inhibition of regeneration is associated with an increase in the number of algae per gastric cell in regenerating hydra relative to non-regenerating controls

    Measurements of SCRF cavity dynamic heat load in horizontal test system

    Full text link
    The Horizontal Test System (HTS) at Fermilab is currently testing fully assembled, dressed superconducting radio frequency (SCRF) cavities. These cavities are cooled in a bath of superfluid helium at 1.8K. Dissipated RF power from the cavities is a dynamic heat load on the cryogenic system. The magnitude of heat flux from these cavities into the helium is also an important variable for understanding cavity performance. Methods and hardware used to measure this dynamic heat load are presented. Results are presented from several cavity tests and testing accuracy is discussed.Comment: 6 pp. Cryogenic Engineering Conference and International Cryogenic Materials Conference 28 Jun - 2 Jul 2009. Tucson, Arizon

    Infinite-horizon choice functions

    Get PDF
    We analyze infinite-horizon choice functions within the setting of a simple technology. Efficiency and time consistency are characterized by stationary consumption and inheritance functions, as well as a transversality condition. In addition, we consider the equity axioms Suppes-Sen, Pigou-Dalton, and resource monotonicity. We show that Suppes-Sen and Pigou-Dalton imply that the consumption and inheritance functions are monotone with respect to time - thus justifying sustainability - while resource monotonicity implies that the consumption and inheritance functions are monotone with respect to the resource. Examples illustrate the characterization results.Intergenerational resource allocation, infinite-horizon choice

    Spectrally efficient transmit diversity scheme for differentially modulated multicarrier transmissions

    Get PDF
    Cyclic delay diversity is a simple, yet effective, transmit diversity scheme for multicarrier based transmissions employing coherent digital linear modulation schemes. It is shown that, for satisfactory operation, the scheme requires additional channel estimation overhead compared to single antenna and traditional space–time coded transmissions owing to the inherent increase in frequency selective fading. The authors analyse the additional channel estimation overhead requirement for a Hiperlan #2 style system with two transmit antennas operating in a NLOS indoor environment. The analysis shows that an additional overhead of 500% is required for the candidate system compared to a single antenna system. It is also shown that by employing differential modulation the channel estimation overhead can be eliminated with significant performance improvement compared to a system employing a practical channel estimation scheme. This novel combination, termed ‘differentially modulated cyclic delay diversity, is shown to yield a highly spectral efficient, yet simple transmit diversity solution for multi-carrier transmissions

    Dynamic PID loop control

    Full text link
    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.Comment: 7 pp. Cryogenic Engineering Conference and International Cryogenic Materials Conference CEC-ICMC 2011, 13-17 June 2011. Spokane, Washingto

    Infinite-Horizon Choice Functions

    Get PDF
    We analyze infinite-horizon choice functions within the setting of a simple linear technology. Time consistency and efficiency are characterized by stationary consumption and inheritance functions, as well as a transversality condition. In addition, we consider the equity axioms Suppes-Sen, Pigou-Dalton, and resource monotonicity. We show that Suppes-Sen and Pigou-Dalton imply that the consumption and inheritance functions are monotone with respect to time—thus justifying sustainability—while resource monotonicity implies that the consumption and inheritance functions are monotone with respect to the resource. Examples illustrate the characterization results

    Strong anonymity and infinite streams.

    Get PDF
    The extended rank-discounted utilitarian social welfare order introduced and axiomatized by Stéphane Zuber and Geir B. Asheim satisfies strong anonymity (J. Econ. Theory (2011), doi:10.1016/j.jet.2011.08.001). We question the appropriateness of strong anonymity in the context of a countably infinite sequence of subsequent generations. A modified criterion that is incomplete and satisfies finite anonymity is presented.

    Distinct fos-expressing neuronal ensembles in the ventromedial prefrontal cortex mediate food reward and extinction memories

    Get PDF
    In operant learning, initial reward-associated memories are thought to be distinct from subsequent extinction-associated memories. Memories formed during operant learning are thought to be stored in “neuronal ensembles.” Thus, we hypothesize that different neuronal ensembles encode reward- and extinction-associated memories. Here, we examined prefrontal cortex neuronal ensembles involved in the recall of reward and extinction memories of food self-administration.Wefirst trained rats to lever press for palatable food pellets for 7 d (1 h/d) and then exposed them to 0, 2, or 7 daily extinction sessions in which lever presses were not reinforced. Twenty-four hours after the last training or extinction session, we exposed the rats to either a short 15 min extinction test session or left them in their homecage (a control condition). We found maximal Fos (a neuronal activity marker) immunoreactivity in the ventral medial prefrontal cortex of rats that previously received 2 extinction sessions, suggesting that neuronal ensembles in this area encode extinction memories. We then used the Daun02 inactivation procedure to selectively disrupt ventral medial prefrontal cortex neuronal ensembles that were activated during the 15 min extinction session following 0 (no extinction) or 2 prior extinction sessions to determine the effects of inactivating the putative food reward and extinction ensembles, respectively, on subsequent nonreinforced food seeking 2 d later. Inactivation of the food reward ensembles decreased food seeking, whereas inactivation of the extinction ensembles increased food seeking. Our results indicate that distinct neuronal ensembles encoding operant reward and extinction memories intermingle within the same cortical area

    Numerical modeling of a multiscale gravity wave event and its airglow signatures over Mount Cook, New Zealand, during the DEEPWAVE campaign

    Get PDF
    A 2-D nonlinear compressible model is used to simulate a large-amplitude, multiscale mountain wave event over Mount Cook, NZ, observed as part of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign and to investigate its observable signatures in the hydroxyl (OH) layer. The campaign observed the presence of a _x=200ækm mountain wave as part of the 22nd research flight with amplitudes of \u3e20æK in the upper stratosphere that decayed rapidly at airglow heights. Advanced Mesospheric Temperature Mapper (AMTM) showed the presence of small-scale (25_28ækm) waves within the warm phase of the large mountain wave. The simulation results show rapid breaking above 70ækm altitude, with the preferential formation of almost-stationary vortical instabilities within the warm phase front of the mountain wave. An OH airglow model is used to identify the presence of small-scale wave-like structures generated in situ by the breaking of the mountain wave that are consistent with those seen in the observations. While it is easy to interpret these feature as waves in OH airglow data, a considerable fraction of the features are in fact instabilities and vortex structures. Simulations suggest that a combination of a large westward perturbation velocity and shear, in combination with strong perturbation temperature gradients, causes both dynamic and convective instability conditions to be met particularly where the wave wind is maximized and the temperature gradient is simultaneously minimized. This leads to the inevitable breaking and subsequent generation of smaller-scale waves and instabilities which appear most prominent within the warm phase front of the mountain wave. ©2017. American Geophysical Union. All Rights Reserved
    corecore