286 research outputs found
On the Enhanced Interstellar Scattering Toward B1849+005
(Abridged) This paper reports new Very Large Array (VLA) and Very Long
Baseline Array (VLBA) observations of the extragalactic source B1849+005 at
frequencies between 0.33 and 15 GHz and the re-analysis of archival VLA
observations at 0.33, 1.5, and 4.9 GHz. The structure of this source is complex
but interstellar scattering dominates the structure of the central component at
least to 15 GHz. An analysis of the phase structure functions of the
interferometric visibilities shows the density fluctuations along this line of
sight to be anisotropic (axial ratio = 1.3) with a frequency-independent
position angle, and having an inner scale of roughly a few hundred kilometers.
The anisotropies occur on length scales of order 10^{15} cm (D/5 kpc), which
within the context of certain magnetohydrodynamic turbulence theories indicates
the length scale on which the kinetic and magnetic energy densities are
comparable. A conservative upper limit on the velocity of the scattering
material is 1800 km/s. In the 0.33 GHz field of view, there are a number of
other sources that might also be heavily scattered. Both B1849+005 and PSR
B1849+00 are highly scattered, and they are separated by only 13'. If the lines
of sight are affected by the same ``clump'' of scattering material, it must be
at least 2.3 kpc distant. However, a detailed attempt to account for the
scattering observables toward these sources does not produce a self-consistent
set of parameters for such a clump. A clump of H\alpha emission, possibly
associated with the H II region G33.418-0.004, lies between these two lines of
sight, but it seems unable to account for all of the required excess
scattering.Comment: 23 pages, LaTeX2e AASTeX, 13 figures in 14 PostScript files, accepted
for publication in Ap
The Radio Continuum of the Metal-Deficient Blue Compact Dwarf Galaxy SBS0335-052
We present new Very Large Array observations at five frequencies, from 1.4 to
22GHz, of the extremely low-metallicity blue compact dwarf SBS0335-052. The
radio spectrum shows considerable absorption at 1.49GHz, and a composite
thermal+non-thermal slope. After fitting the data with a variety of models, we
find the best-fitting geometry to be one with free-free absorption
homogeneously intermixed with the emission of both thermal and non-thermal
components. The best-fitting model gives an an emission measure EM ~ 8x10^7pc
cm^{-6} and a diameter of the radio-emitting region D ~17pc. The inferred
density is n_e ~ 2000 cm^{-3}. The thermal emission comes from an ensemble of
\~9000 O7 stars, with a massive star-formation rate (>=5Msun) of 0.13-0.15
yr^{-1}, and a supernova rate of 0.006 yr^{-1}. We find evidence for ionized
gas emission from stellar winds, since the observed Bralpha line flux
significantly exceeds that inferred from the thermal radio emission. The
non-thermal fraction at 5GHz is ~0.7, corresponding to a non-thermal luminosity
of ~2x10^{20} W Hz^{-1}. We attribute the non-thermal radio emission to an
ensemble of compact SN remnants expanding in a dense interstellar medium, and
derive an equipartition magnetic field of ~0.6-1 mG, and a pressure of
\~3x10^{-8}-1x10^{-7} dyne cm^{-2}. If the radio properties of SBS0335-052 are
representative of star formation in extremely low-metallicity environments,
derivations of the star formation rate from the radio continuum in high
redshift primordial galaxies need to be reconsidered. Moreover, photometric
redshifts inferred from ``standard'' spectral energy distributions could be
incorrect.Comment: 25 pages, including 3 figures, accepted for publication in Ap
Parameters of Herbig Ae/Be and Vega-type stars
This work presents the determination of the effective temperature, gravity,
metallicity, mass, luminosity and age of 27 young early-type stars, most of
them in the age range 1-10 Myr, and three -suspected- hot companions of post-T
Tauri stars belonging to the Lindroos binary sample. Most of these objects show
IR excesses in their spectral energy distributions, which are indicative of the
presence of disks. The work is relevant in the fields of stellar physics,
physics of disks and formation of planetary systems.
Spectral energy distributions and mid-resolution spectra were used to
estimate the effective temperature. The comparison of the profiles of the
Balmer lines with synthetic profiles provides the value of the stellar gravity.
High-resolution optical observations and synthetic spectra are used to estimate
the metallicity, [M/H]. Once these three parameters are known for each star,
evolutionary tracks and isochrones provide estimations of the mass, luminosity,
age and distance (or upper limits in some cases). The method is original in the
sense that it is distance-independent, i.e. the estimation of the stellar
parameters does not require, as it happens in other works, the knowledge of the
distance to the object. A detailed discussion on some individual objects, in
particular VV Ser, RR Tau, 49 Cet and the three suspected hot companions of
post-T Tauris, is presented. The paper also shows the difficulty posed by the
morphology and behaviour of the system star+disk in the computation of the
stellar parameters.Comment: 18 pages, 11 figure
Interferometric imaging of the sulfur-bearing molecules H2S, SO and CS in comet C/1995 O1 (Hale-Bopp)
We present observations of rotational lines of H2S, SO and CS performed in
comet C/1995 O1 (Hale-Bopp) in March 1997 with the Plateau de Bure
interferometer (IRAM). The observations provide informations on the spatial and
velocity distributions of these molecules. They can be used to constrain their
photodissociation rate and their origin. We use a radiative transfer code which
allows us to compute synthetic line profiles and interferometric maps, to be
compared to the observations. Both single-dish spectra and interferometric
spectral maps show a day/night asymmetry in the outgassing. From the analysis
of the spectral maps, including the astrometry, we show that SO and CS present
in addition a jet-like structure that may be the gaseous counterpart of the
dust high-latitude jet observed in optical images. A CS rotating jet is also
observed. Using the astrometry provided by continuum radio maps obtained in
parallel, we conclude that there is no need to invoke of nongravitational
forces acting on this comet, and provide an updated orbit. The radial extension
of H2S is found to be consistent with direct release from the nucleus. SO
displays an extended radial distribution. Assuming that SO2 is the parent of
SO, the photodissociation rate of SO is measured to be 1.5 E-4 s-1 at 1 AU from
the Sun. This is lower than most laboratory-based estimates and may suggest
that SO is not solely produced by SO2 photolysis. From the observations of
J(2-1) and J(5-4) CS lines, we deduce a CS photodissociation rate of 1 to 5 E-5
s-1. The photodissociation rate of CS2, the likely parent of CS, cannot be
constrained due to insufficient resolution, but our data are consistent with
published values. These observations illustrate the cometary science that will
be performed with the future ALMA interferometer.Comment: Accepted for publication in Astronomy & Astrophysic
Taming the Invisible Monster: System Parameter Constraints for Epsilon Aurigae from the Far-Ultraviolet to the Mid-Infrared
We have assembled new Spitzer Space Telescope Infrared Array Camera
observations of the mysterious binary star Epsilon Aurigae, along with archival
far-ultraviolet to mid-infrared data, to form an unprecedented spectral energy
distribution spanning three orders of magnitude in wavelength from 0.1 microns
to 100 microns. The observed spectral energy distribution can be reproduced
using a three component model consisting of a 2.2+0.9/-0.8 Msun F type
post-asymptotic giant branch star, and a 5.9+/-0.8 Msun B5+/-1 type main
sequence star that is surrounded by a geometrically thick, but partially
transparent, disk of gas and dust. At the nominal HIPPARCOS parallax distance
of 625 pc, the model normalization yields a radius of 135+/-5 Rsun for the F
star, consistent with published interferometric observations. The dusty disk is
constrained to be viewed at an inclination of i > 87 deg, and has effective
temperature of 550+/-50 K with an outer radius of 3.8 AU and a thickness of
0.95 AU. The dust content of the disk must be largely confined to grains larger
than ~10 microns in order to produce the observed gray optical-infrared
eclipses and the lack of broad dust emission features in the archival Spitzer
mid-infrared spectra. The total mass of the disk, even considering a potential
gaseous contribution in addition to the dust that produces the observed
infrared excess, is << 1 Msun. We discuss evolutionary scenarios for this
system that could lead to the current status of the stellar components and
suggests possibilities for its future evolution, as well as potential
observational tests of our model.Comment: 13 pages, 3 figures. Accepted for publication in The Astrophysical
Journal
Star Formation in the Milky Way and Nearby Galaxies
We review progress over the past decade in observations of large-scale star
formation, with a focus on the interface between extragalactic and Galactic
studies. Methods of measuring gas contents and star formation rates are
discussed, and updated prescriptions for calculating star formation rates are
provided. We review relations between star formation and gas on scales ranging
from entire galaxies to individual molecular clouds.Comment: 55 pages, 15 figures, in press for Annual Reviews of Astronomy and
Astrophysics; Updated with corrected equation 5, improved references, and
other minor change
Anomalous Microwave Emission from the HII region RCW175
We present evidence for anomalous microwave emission in the RCW175 \hii
region. Motivated by 33 GHz 13\arcmin resolution data from the Very Small
Array (VSA), we observed RCW175 at 31 GHz with the Cosmic Background Imager
(CBI) at a resolution of 4\arcmin. The region consists of two distinct
components, G29.0-0.6 and G29.1-0.7, which are detected at high signal-to-noise
ratio. The integrated flux density is Jy at 31 GHz, in good
agreement with the VSA. The 31 GHz flux density is Jy
() above the expected value from optically thin free-free emission
based on lower frequency radio data and thermal dust constrained by IRAS and
WMAP data. Conventional emission mechanisms such as optically thick emission
from ultracompact \hii regions cannot easily account for this excess. We
interpret the excess as evidence for electric dipole emission from small
spinning dust grains, which does provide an adequate fit to the data.Comment: 5 pages, 2 figures, submmited to ApJ Letter
G28.17+0.05: An unusual giant HI cloud in the inner Galaxy
New 21 cm HI observations have revealed a giant HI cloud in the Galactic
plane that has unusual properties. It is quite well defined, about 150 pc in
diameter at a distance of 5 kpc, and contains as much as 100,000 Solar Masses
of atomic hydrogen. The outer parts of the cloud appear in HI emission above
the HI background, while the central regions show HI self-absorption. Models
which reproduce the observations have a core with a temperature <40 K and an
outer envelope as much as an order of magnitude hotter. The cold core is
elongated along the Galactic plane, whereas the overall outline of the cloud is
approximately spherical. The warm and cold parts of the HI cloud have a
similar, and relatively large, line width of approximately 7 km/s. The cloud
core is a source of weak, anomalously-excited 1720 MHz OH emission, also with a
relatively large line width, which delineates the region of HI self-absorption
but is slightly blue-shifted in velocity. The intensity of the 1720 MHz OH
emission is correlated with N(H) derived from models of the cold core. There is
12CO emission associated with the cloud core. Most of the cloud mass is in
molecules, and the total mass is > 200,000 Solar Masses. In the cold core the
HI mass fraction may be 10 percent. The cloud has only a few sites of current
star formation. There may be about 100 more objects like this in the inner
Galaxy; every line of sight through the Galactic plane within 50 degrees of the
Galactic center probably intersects at least one. We suggest that G28.17+0.05
is a cloud being observed as it enters a spiral arm and that it is in the
transition from the atomic to the molecular state.Comment: 35 pages, inludes 12 figure
Understanding the Spectral Energy Distributions of the Galactic Star Forming Regions IRAS 18314-0720, 18355-0532 & 18316-0602
Embedded Young Stellar Objects (YSO) in dense interstellar clouds is treated
self-consistently to understand their spectral energy distributions (SED).
Radiative transfer calculations in spherical geometry involving the dust as
well as the gas component, have been carried out to explain observations
covering a wide spectral range encompassing near-infrared to radio continuum
wavelengths. Various geometric and physical details of the YSOs are determined
from this modelling scheme. In order to assess the effectiveness of this
self-consistent scheme, three young Galactic star forming regions associated
with IRAS 18314-0720, 18355-0532 and 18316-0602 have been modelled as test
cases. They cover a large range of luminosity ( 40). The modelling of
their SEDs has led to information about various details of these sources, e.g.
embedded energy source, cloud structure & size, density distribution,
composition & abundance of dust grains etc. In all three cases, the best fit
model corresponds to the uniform density distribution.Comment: AAMS style manuscript with 3 tables (in a separate file) and 4
figures. To appear in Journal of Astronophysics & Astronom
Accretion-related properties of Herbig Ae/Be stars. Comparison with T Tauris
We look for trends relating the mass accretion rate (Macc) and the stellar
ages (t), spectral energy distributions (SEDs), and disk masses (Mdisk) for a
sample of 38 HAeBe stars, comparing them to analogous correlations found for
classical T Tauri stars. Our goal is to shed light on the timescale and
physical processes that drive evolution of intermediate-mass pre-main sequence
objects.
Macc shows a dissipation timescale \tau = 1.3^{+1.0}_{-0.5} Myr from an
exponential law fit, while a power law yields Macc(t) \propto t^{-\eta}, with
\eta = 1.8^{+1.4}_{-0.7}. This result is based on our whole HAeBe sample (1-6
Msun), but the accretion rate decline most probably depends on smaller stellar
mass bins. The near-IR excess is higher and starts at shorter wavelengths (J
and H bands) for the strongest accretors. Active and passive disks are roughly
divided by 2 x 10^{-7} Msun/yr. The mid-IR excess and the SED shape from the
Meeus et al. classification are not correlated with Macc. We find Macc \propto
Mdisk^{1.1 +- 0.3}. Most stars in our sample with signs of inner dust
dissipation typically show accretion rates ten times lower and disk masses
three times smaller than the remaining objects.
The trends relating Macc with the near-IR excess and Mdisk extend those for T
Tauri stars, and are consistent with viscous disk models. The differences in
the inner gas dissipation timescale, and the relative position of the stars
with signs of inner dust clearing in the Macc-Mdisk plane, could be suggesting
a slightly faster evolution, and that a different process - such as
photoevaporation - plays a more relevant role in dissipating disks in the HAeBe
regime compared to T Tauri stars. Our conclusions must consider the mismatch
between the disk mass estimates from mm fluxes and the disk mass estimates from
accretion, which we also find in HAeBe stars.Comment: 11 pages, 7 figures, 1 appendix. Accepted in A&
- …
