31 research outputs found

    Database of Diazotrophs in Global Ocean: Abundance, Biomass, and Nitrogen Fixation Rates

    Get PDF
    Marine N2 fixing microorganisms, termed di-azotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52-73) Tg N yr-1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4-3.1) Tg C from cell counts and to 89 (43-150) Tg C from nifH- based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg Nyr-1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ± 70 %. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future

    Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

    Get PDF
    Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes) and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73) Tg N yr?1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1) Tg C from cell counts and to 89 (43–150) Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr?1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2 fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N2 fixation rate upward and may result in significantly higher estimates for the global N2 fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N2 fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future. The database is stored in PANGAEA (doi:10.1594/PANGAEA.774851)

    Trophic interactions in the microbial food web in a coastal upwelling system off central Chile (∼36°C)

    Get PDF
    Coastal upwelling areas are highly productive systems and were initially characterized by having a short food chain, being ecologically efficient in the trophic transfer. Large micro-phytoplankton, predominating under high availability of nutrients in the mixed layer, are grazed by large herbivorous zooplankton, and they, in turn, are consumed by planktivorous fishes. Under this scheme, little attention was paid to the role of micro-organisms in these areas. This thesis provides an assessment of the temporal variability in the structure of micro-organism assemblages and of the trophic interactions in microbial food webs in the Humboldt Current System (HCS) off Concepcion, central Chile, as a basis to understand the relevance of the carbon flow through the microbial food web in this coastal upwelling area

    Trophic role of small cyclopoid copepod nauplii in the microbial food web: a case study in the coastal upwelling system off central Chile

    No full text
    Copepod grazing impact on planktonic com- munities has commonly been underestimated due to the lack of information on naupliar feeding behaviour and ingestion rates. That is particularly true for small cyclopoid copepods, whose nauplii are mainly in the microzoo- plankton size range (<200 lm). The trophic role of Oithona spp. nauplii was investigated off ConcepcioŽ n (central Chile, *36°S) during the highly productive upwelling season, when maximum abundances of these nauplii were expected. Diet composition, ingestion rates, and food-type preferences were assessed through grazing experiments with different size fractions of natural plank- tonic assemblages (<3, <20, <100, and <125 lm) and cultures of the nano&#64258;agellate Isochrysis galbana. When the Oithona spp. nauplii were offered a wide range of size fractions as food (pico- to microplankton), they mostly ingested small (25 µm) nano&#64258;agellates (563 x 10^3 cells nauplius^-1 day^-1). No ingestion on microplankton was detected, and picoplankton was mainly ingested when it was the only food available. Daily carbon (C) uptake by the nauplii ranged between 28 and 775 ng C nauplius^-1, representing an overall mean of 378% of their body C. Our relatively high ingestion rate estimates can be explained by methodological constraints in previous studies on naupliar feeding, including those dealing with over-crowding and edge effects. Overall, the grazing impact of the Oithona spp. nauplii on the prey C standing stocks amounts up to 21% (average = 13%) for picoplankton and 54% (average = 28%) for nanoplankton. These estimates imply that the nauplii of the most dominant cyclopoid copepods exert a signi&#64257;cant control on the abundances of nano- plankton assemblages and, thereby, represent an important trophic link between the classical and microbial food webs in this coastal upwelling system

    Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2

    No full text
    Gradients of oxygen (O2) and pH, as well as small-scale fluxes of carbon (C), nitrogen (N) and O2 were investigated under different partial pressures of carbon dioxide (pCO2) in field-collected colonies of the marine dinitrogen (N2)-fixing cyanobacterium Trichodesmium. Microsensor measurements indicated that cells within colonies experienced large fluctuations in O2, pH and CO2concentrations over a day–night cycle. O2 concentrations varied with light intensity and time of day, yet colonies exposed to light were supersaturated with O2 (up to ~200%) throughout the light period and anoxia was not detected. Alternating between light and dark conditions caused a variation in pH levels by on average 0.5 units (equivalent to 15 nmol l−1 proton concentration). Single-cell analyses of C and N assimilation using secondary ion mass spectrometry (SIMS; large geometry SIMS and nanoscale SIMS) revealed high variability in metabolic activity of single cells and trichomes of Trichodesmium, and indicated transfer of C and N to colony-associated non-photosynthetic bacteria. Neither O2 fluxes nor C fixation by Trichodesmium were significantly influenced by short-term incubations under different pCO2 levels, whereas N2fixation increased with increasing pCO2. The large range of metabolic rates observed at the single-cell level may reflect a response by colony-forming microbial populations to highly variable microenvironments
    corecore